

US 9,175,312 B2

Nov. 3, 2015

(12) United States Patent

(45) **Date of Patent:**

(56)References Cited

(10) **Patent No.:**

U.S. PATENT DOCUMENTS

5,994,128	A	11/1999	Fallaux et al.
6,033,908	A	3/2000	Bout et al.
6,204,059	B1	3/2001	Samulski et al.
6,265,212	B1	7/2001	Fallaux et al.
6,306,652	B1	10/2001	Fallaux et al.
6,723,551	B2	4/2004	Kotin et al.
7,582,290	B2	9/2009	Rodriguez et al.
2003/0148506	A1	8/2003	Kotin et al.
2009/0203071	A1	8/2009	Chen

FOREIGN PATENT DOCUMENTS

WO/99/03981 WO 1/1999

OTHER PUBLICATIONS

Urabe, 2002, Human Gene Therapy, 13:1935-1943.* Chen, 2008, Molecular Therapy, 16:924-930.*

Katz, 1990, Molecular and Cellular Biology, 10:696-704.*

Jeang (1987, J Virol, 61:1761-1764).*

Ellerby, H. M., et al. "Anti-cancer activity of targeted pro-apoptotic peptides." Nat. Med. 5(9):1032-8. (1999).

Huajie Zhang, et al., Research Progress of Diphtheriatoxin Antitumor. Infectious Disease Information vol. 16. No. 2. Dec. 31, 2003. Denning, C., et al. "Bystander Effects of Different Enzyme-Prodrug Systems for Cancer Gene Therapy Depend on Different Pathways for Intercellular Transfer of Toxic Metabolites, a Factor That Will Govern Clinical Choice of Appropriate Regimes." Hum. Gene Ther. 8(15): 1825-1835 (1997).

Edelweiss, E., et al. "Barnase as a new therapeutic agent triggering apoptosis in human cancer cells." PLoS ONE. 3: e2434. (2008).

Ellerby, H.M., et al. "Anti-cancer activity of targeted pro-apoptotic peptides." Nat. Med. 5(9):1032-8. (1999).

Gu, J., et al. "hTERT promoter induces tumor-specific Bax gene expression and cell killing in syngenic mouse tumor model and prevents systemic toxicity." Gene. Ther. 9(1):30-7. (2002).

Keyvani, K., et al. "Tetracycline-controlled expression but not toxicity of an attenuated diphtheria toxin mutant." Life. Sci. 64:1719-1724. (1999).

(Continued)

Primary Examiner — Valarie Bertoglio (74) Attorney, Agent, or Firm — Saul L. Zackson; Zackson Law LLC

(57)ABSTRACT

The present disclosure describes nucleic acids, and viruses comprising such nucleic acids, for growing a toxic gene in an insect cell. These nucleic acids comprise a sequence encoding a toxic polypeptide, and an intron that interrupts the sequence, whereby the intron is spliced in mammalian cells but not in insect cells. Infection of mammalian cells but not insect cells with the nucleic acids or viruses can lead to expression of toxic levels of the toxic polypeptide in mammalian cells but not in insect cells. Viruses, such as an AAV or a baculovirus comprising a nucleic acid can be grown in insect cell lines in vitro and can be administered to a subject in need of therapy, such as a subject in need of cancer therapy.

(54) VECTORS HARBORING TOXIC GENES, METHODS AND USES THEREFOR

(71) Applicant: Haifeng Chen, Piedmont, CA (US)

(72) Inventor: Haifeng Chen, Piedmont, CA (US)

Assignee: Virovek Incorporation, Hayward, CA

Subject to any disclaimer, the term of this (*) Notice:

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

13/982,530 (21) Appl. No.:

(22) PCT Filed: Oct. 16, 2012

(86) PCT No.: PCT/US2012/060441

§ 371 (c)(1),

(2) Date: Jul. 30, 2013

(87) PCT Pub. No.: WO2013/085624

PCT Pub. Date: Jun. 13, 2013

(65)**Prior Publication Data**

US 2014/0296324 A1 Oct. 2, 2014

Related U.S. Application Data

(60) Provisional application No. 61/568,595, filed on Dec. 8, 2011, provisional application No. 61/618,689, filed on Mar. 31, 2012.

(51) Int. Cl. C07H 21/00 (2006.01)C12N 15/86 (2006.01)A61K 31/7088 (2006.01)C07K 14/34 (2006.01)C07K 14/21 (2006.01)(2006.01)C12N 9/22 C12N 9/24 (2006.01)A61K 48/00 (2006.01)

(52) U.S. Cl.

CPC C12N 15/86 (2013.01); A61K 31/7088 (2013.01); C07K 14/21 (2013.01); C07K 14/34 (2013.01); C12N 9/22 (2013.01); C12N 9/2497 (2013.01); A61K 48/00 (2013.01); C12N 2710/14043 (2013.01); C12N 2710/14052 (2013.01); C12N 2750/14143 (2013.01); C12N 2750/14152 (2013.01); C12N 2799/026 (2013.01); C12N 2830/42 (2013.01); C12N 2840/005 (2013.01); C12N 2840/102 (2013.01); C12N 2840/44 (2013.01); C12N 2840/85 (2013.01)

(58) Field of Classification Search

See application file for complete search history.

26 Claims, 23 Drawing Sheets

(56) References Cited

OTHER PUBLICATIONS

Kohlschutter, J., et al. "Novel cytotoxic vectors based on adeno-associated virus." Toxins. 2:2754-2768. (2010).

Maxwell, I.H., et al. "Regulated Expression of a Diphtheria Toxin A-Chain Gene Transfected Into Human Cells: Possible Strategy for Inducing Cancer Cell Suicide." Cancer Research. 46:4660-4664. (1986)

Maxwell, F., et al. "Cloning, sequence determination, and expression in transfected cells of the coding sequence for the tox 176 attenuated diphtheria toxin A chain." Mol. Cell Biol. 7:1576-1579. (1987).

Paulus, W., et al. "Regulated expression of the diphtheria toxin A gene in human glioma cells using prokaryotic transcriptional control elements." J. Neurosurg. 87:89-95. (1997).

Robinson, D.F., et al. "Suppression of single and double nonsense mutations introduced into the diphtheria toxin A-chain gene: a potential binary system for toxin gene therapy." Hum. Gene Ther. 6:137-143. (1995).

Rodriguez, R., et al. "Urologic applications of gene therapy." Urology. 54:401-406. (1999).

Wang, C.Y., et al. "Recombinant baculovirus containing the diphtheria toxin A gene for malignant glioma therapy." Cancer Res. 66:5798-5806. (2006).

Yamaizumi, M. et al. "One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell." Cell. 15: 245-250. (1978). Zhu, Z.B., et al. "Transcriptional targeting of tumors with a novel tumor-specific survivin promoter." Cancer. Gene. Ther. Apr;11(4):256-62. (2004).

Zhu, Z.B., et al. "Transcriptional targeting of adenoviral vector through the CXCR4 tumor-specific promoter." Gene Ther. Apr; 11(7):645-8. (2004).

Moran Y et al: "Intron Retention as a 1-16 Posttranscriptional Regulatory Mechanism of Neurotoxin Expression at Early Life Stages of the Starlet Anemone Nematostella vectensis". Journal of Molecular Biology. Academic Press. United Kingdom. vol. 380. No. 3. Jul. 11, 2008 • pp. 437-443. XP022736352. ISSN: 0022-2836. DOI: 10.1016/J.JMB.2008.05.011.

Haifeng Chen: "Exploiting the Intron-splicing Mechanism of Insect Cells to Produce Viral Vectors Harboring Toxic Genes for Suicide Gene Therapy". Molecular Therapy—Nucleic Acids. vol. 1 • 1. No. 11. Nov. 27, 2012. p. e57. XP055195248. DOI: 10.1038/mtna.2012. 48.

^{*} cited by examiner

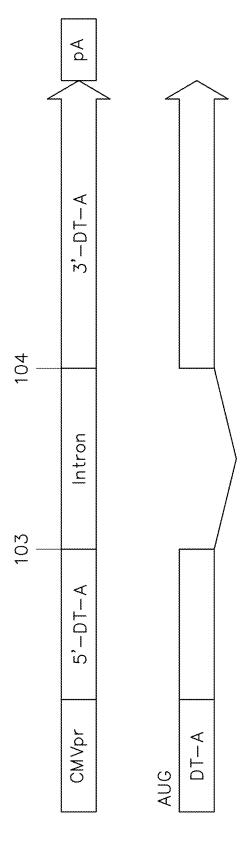
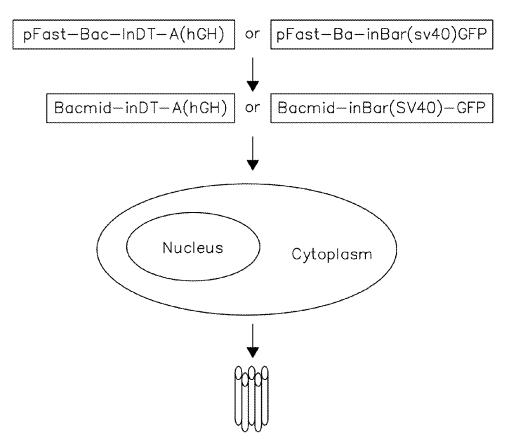



FIG.

FIG. 2

 ${\tt Baculovirus-inDT-A(hGH)} \ \ {\tt or} \ \ {\tt Baculovirus-inBar(SV40)-GFP}$

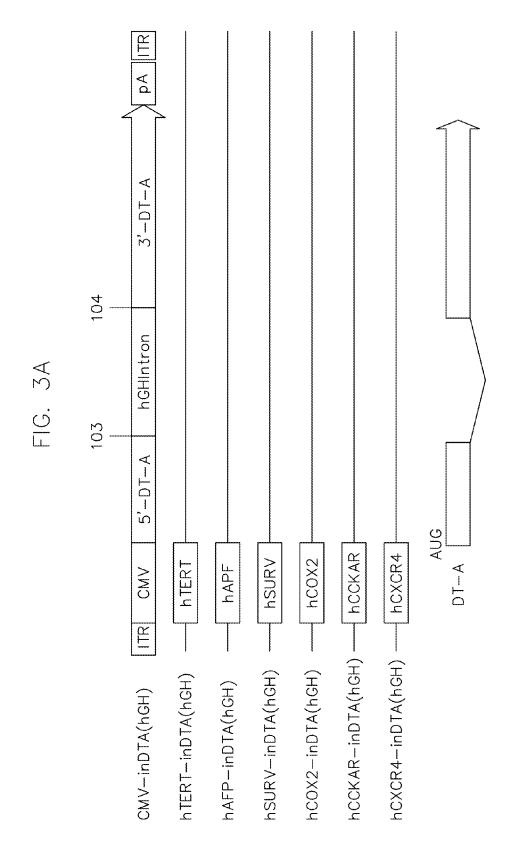


FIG. 3

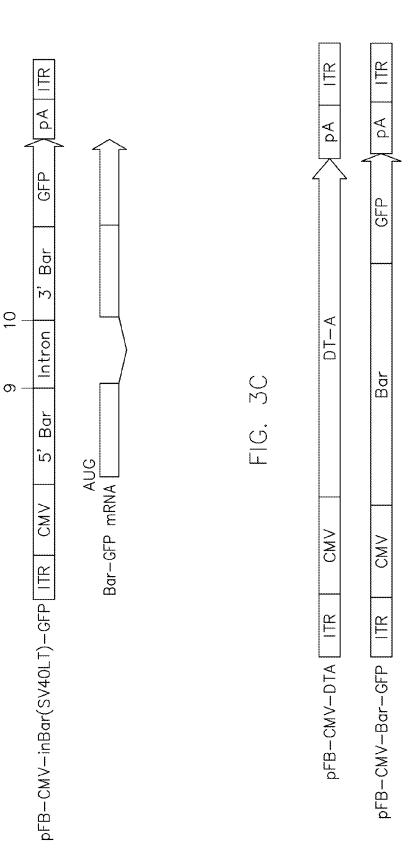


FIG. 4

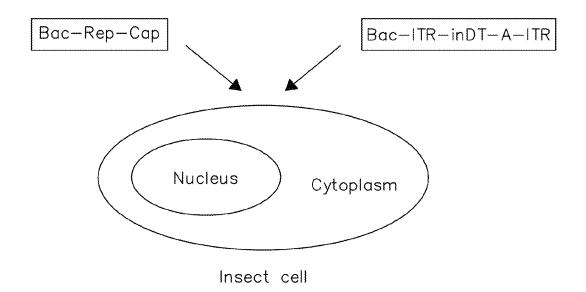
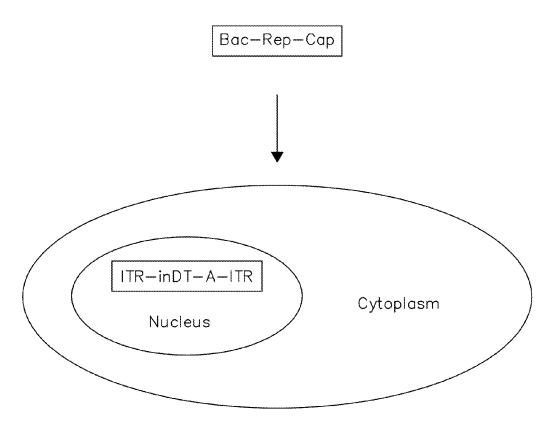



FIG. 5

Insect cell

FIG. 6

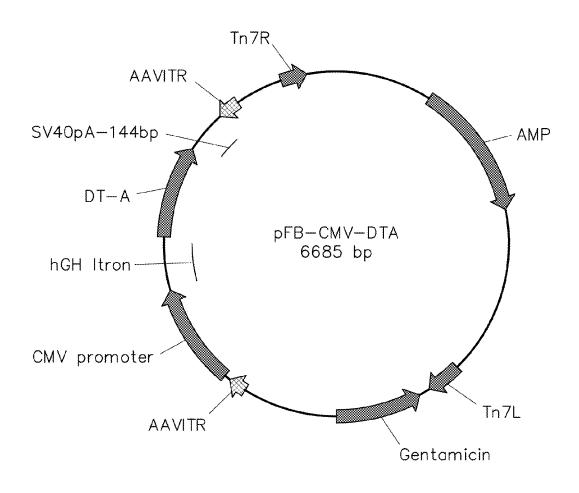


FIG. 7

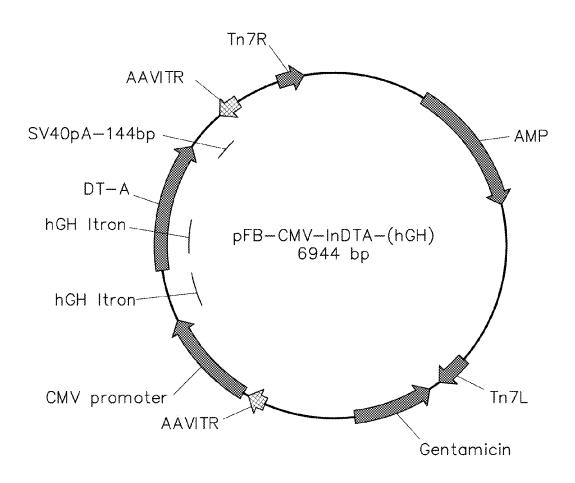


FIG. 8

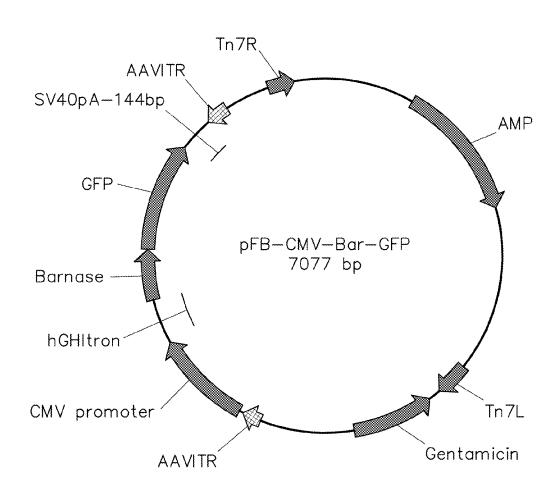


FIG. 9

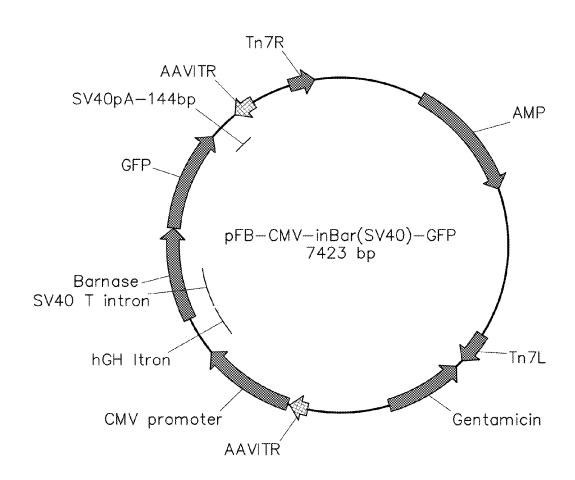
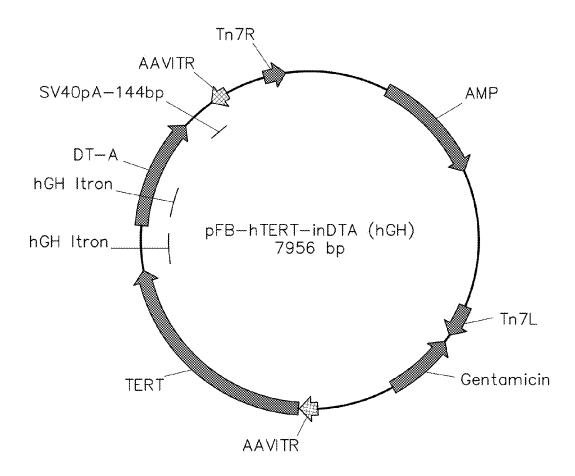
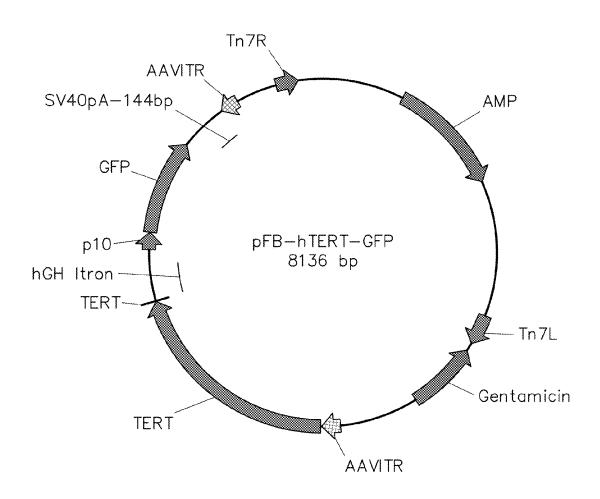
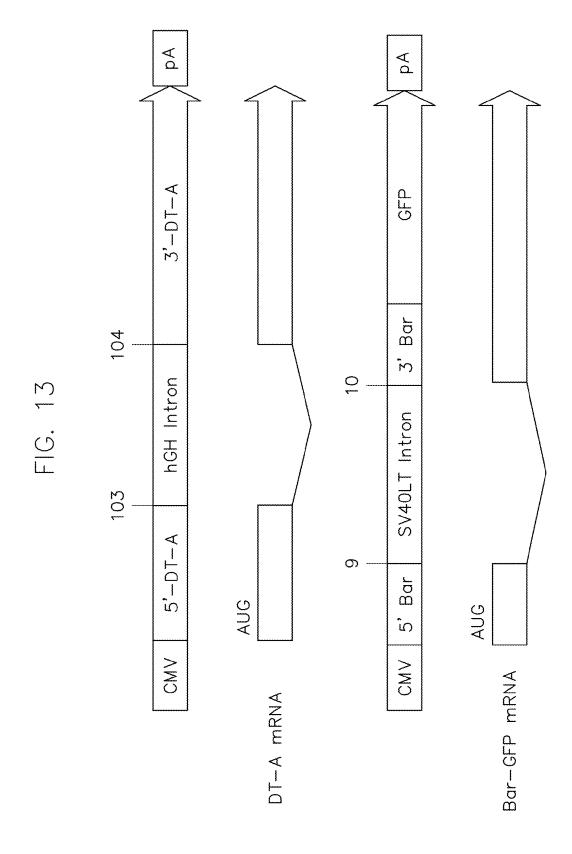
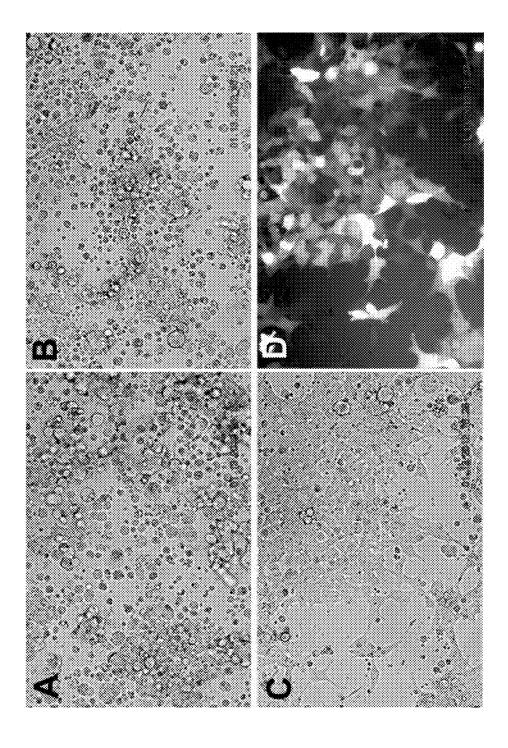
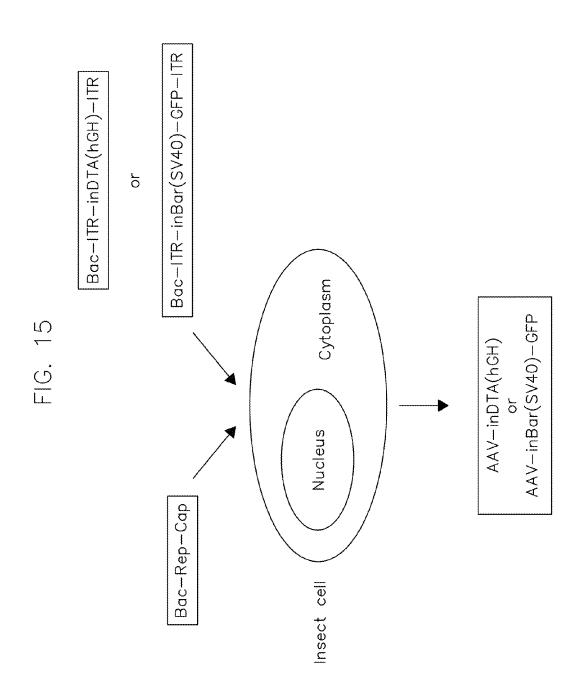
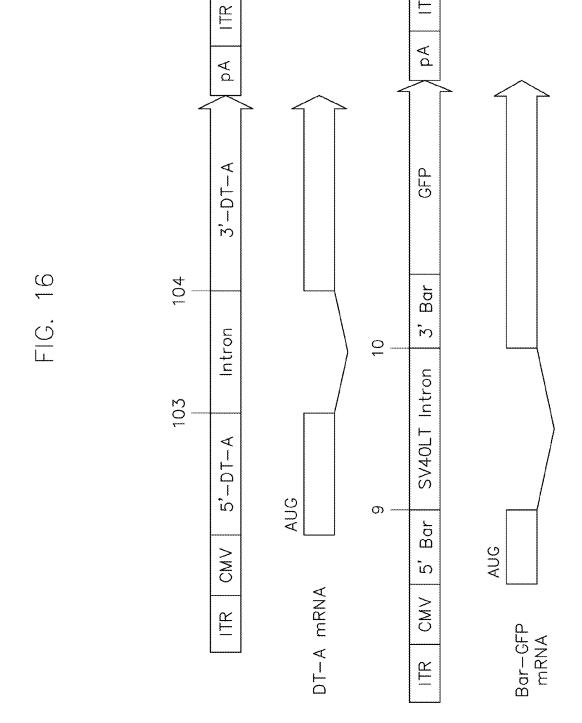
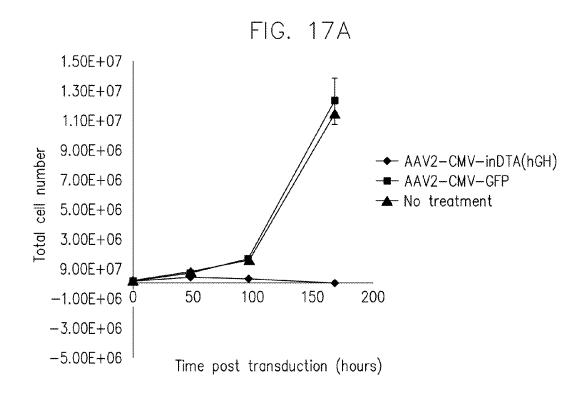


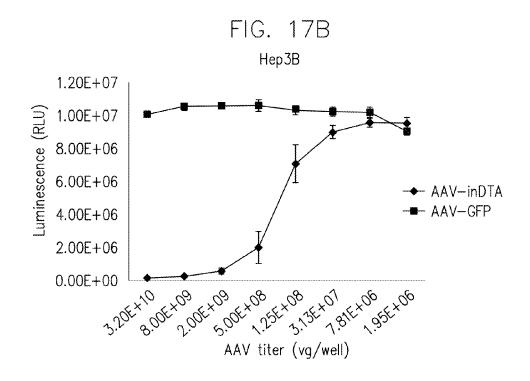
FIG. 10


FIG. 11




CMV-Bar-GFP CMV-inBar (SV40LT) GFP CMV-GFP 1.20E+09 CMV-inDTA(hGH) 1.20E+09 sf9 media 1.30E+04 sf9 Media m/nJd⊠ 1.00E+09 8.00E+08 1.20E+09 2.00E+08 1.40E+09 6.00E+08 4.00E+08 0.00E+00 Baculovirus titer (pfu/ml) 6.00E+ 4. 5.00E+ 4. 5.00E+ 4. 5.00E+ 4. 5.00E+ 6.00E+ 6.00E 1.00E+08 7.00E+08 0.00E+00 Baculovirus titer (pfu/ml) CMV-inBar (SV40)-GFP CMV-inDTA(hGH) 4.40E+06 9.50E+07 CMV-Bar-GFP 7.40E+04 CMV-DTA 1.90E+05 sf9 media sf9 Media 1.30E+04 1.20E + 04⊠pfu/ml lm/ujd⊠ 1.50E+06 1.00E+06 3.00E+06 6.00E+07 0.00E+00 5.00E+05 0.00E+00 4.50E+06 2.50E+06 2.00E+06 1.00E+08 3.00E+07 2.00E+07 5.00E+06 4.00E+06 3.50E+06 8.00E+07 7.00E+07 5.00E+07 4.00E+07 1.00E+07 9.00E+07 Baculovirus titer (pfu/ml) Baculovirus fifer (pfu/ml)



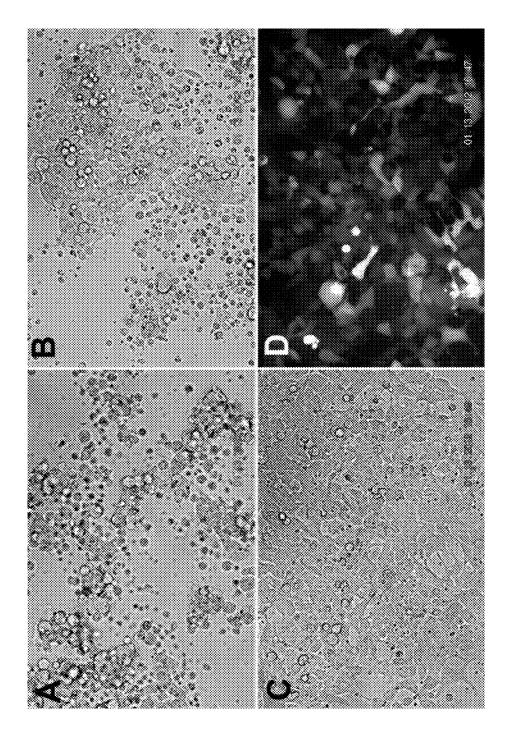
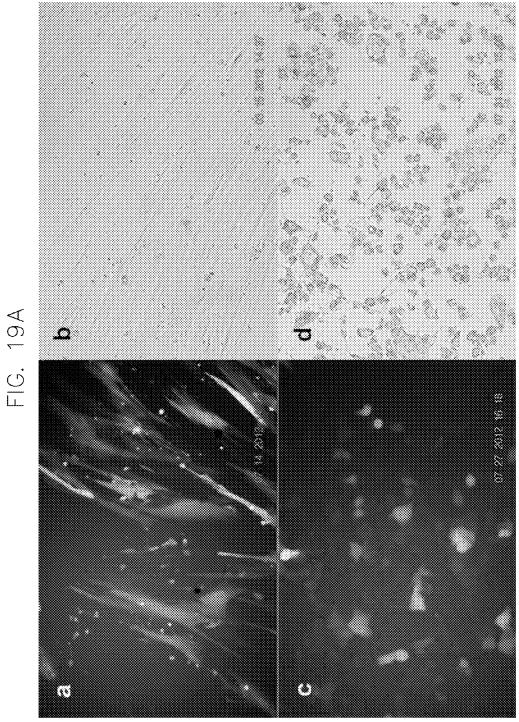
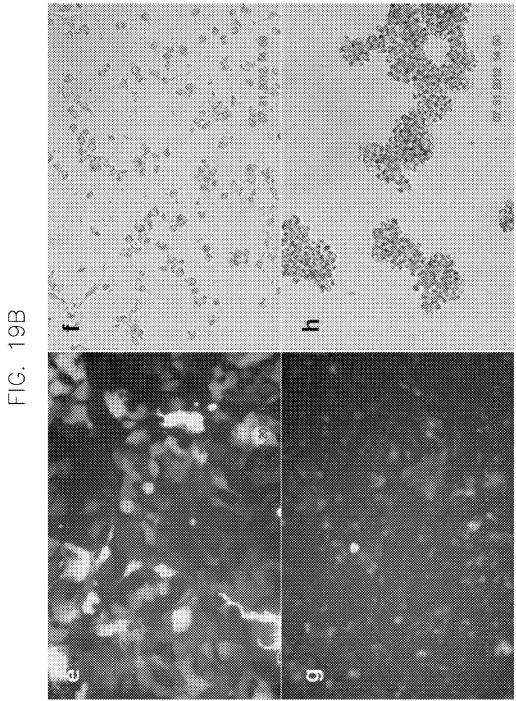
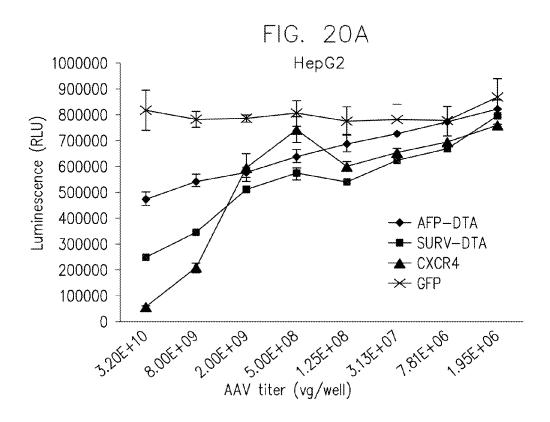





FIG. 18

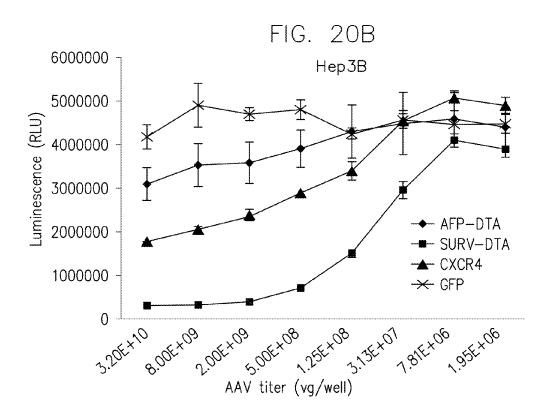
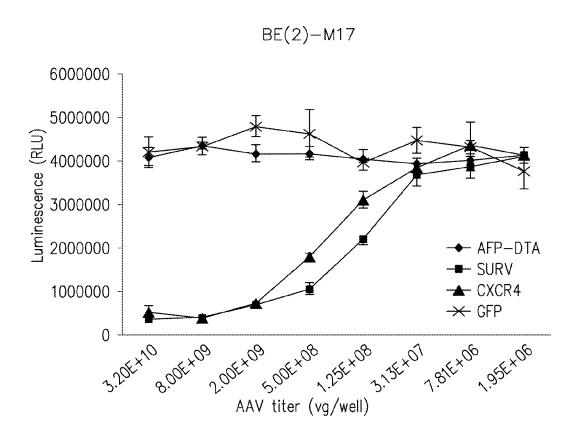



FIG. 20C

VECTORS HARBORING TOXIC GENES, METHODS AND USES THEREFOR

RELATED APPLICATIONS

This application is a National Stage entry application of and claims the benefit of PCT/US12/60441 international filing date 16 Oct. 2012 and claims the benefit of U.S. Provisional Patent Application 61/568,595 filed 8 Dec. 2011 and U.S. Provisional Patent Application 61/618,689 filed 31 Mar. 10 2012. These applications are incorporated by reference, each in its entirety.

INCORPORATION BY REFERENCE OF SEQUENCE LISTING

The Sequence Listing, which is a part of the present disclosure, includes a computer readable form and a written sequence listing comprising nucleotide and/or amino acid sequences. The sequence listing information recorded in ²⁰ computer readable form is identical to the written sequence listing. The subject matter of the Sequence Listing is incorporated herein by reference in its entirety.

INTRODUCTION

The present disclosure is in the field of virology, and, more particularly, in the field of nucleic acid vectors that can be grown in insect cells and used for treatment of mammalian diseases such as cancer.

Toxic genes and proteins encoded by such genes have been used or proposed for use for disease therapies involving inducing cell death, such as, for example cancer therapies involving expression of genes that cause cell death. Suicide gene therapy has become an attractive strategy for cancer 35 treatment (See, e.g., Rodriguez, R. and Simons, J. W. Urology 54: 401-406, 1999). Suicide gene therapy relies on the delivery of genes whose products are toxic, or which produce a toxic product in conjunction with pro-drug administration (Denning, C., et al., Human Gene Therapy 8: 1825-1835, 40 1997). Suicide gene therapy has been widely investigated for the treatment of human immunodeficiency virus (HIV) infection, for controlling graft-versus-host disease, and also for the treatment of cancer. The generation of viral vectors containing toxin genes such as diphtheria toxin A fragment (DT-A), 45 Pseudomonas exotoxin (PE) or barnase has been difficult to fulfill due to the extreme toxicity of these toxins.

Certain proteins encoded by toxic genes can kill a host cell at very low levels of expression. For example, a single molecule of diphtheria toxin (DT-A) can kill a cell (Yamaizumi, 50 M. et al. (1978) Cell 15: 245-250). DT is believed to poison protein synthesis by catalyzing ADP-ribosylation of elongation factor 2 (EF2). DT kills primarily by an apoptosis-mediated pathway, and is believed to kill cells in a cell-cycle independent fashion. This makes DT an attractive cancer therapeutic, as some malignancies such as prostate cancer tend to have a very low mitotic index. Similarly, the ribonuclease barnase has been suggested as a potent toxic agent for targeting to cancer cells (Edelweiss, E., et al., PLoS ONE 3: e2434, 2008).

However, production of viral vectors, such as recombinant adenovirus, recombinant baculovirus, and adeno-associated virus which could be used for delivery of toxic genes to a target cell such as a cancer cell, can be hampered by the toxicity of a toxic gene to the host cell. A viral vector harboring a toxic gene thus must not only be grown under conditions that are not lethal to a host cell that is used for growing the

2

vector, but the vector also must be able to effect toxicity upon a target cell such as a cancer cell.

Previous attempts at limiting toxicity of a toxic gene such as DT-A by use of an inducible and/or tissue specific promoter have led to variable results. For example, Maxwell et al. (Cancer Res. 46:4660-4664, 1986) used a truncated form of the metallothionein promoter to demonstrate that basal expression of this promoter, even in the absence of heavy metals, resulted in substantial inhibition of protein synthesis. This inhibition could be augmented by the addition of an immunoglobulin enhancer element but only minimally by cadmium. The authors were not able to demonstrate true specific cytotoxicity but rather only a preferential cell susceptibility to DT-A-mediated cell death, presumably as a result of 15 basal expression of this highly toxic gene. This group also introduced an attenuated mutant of DT-A (Maxwell, F. et al. (1987) Mol. Cell. Biol. 7:1576-1579) (Robinson, D. F. and Maxwell, I. H. (1995) Hum. Gene Ther. 6:137-143. Subsequent efforts by this group and others concentrated on introducing an attenuated mutant of DT-A (Maxwell, F. et al. (1987) Mol. Cell. Biol. 7:1576-1579) or on tightly regulating gene expression using prokaryotic control elements (Robinson, D. F. and Maxwell, I. H. (1995) Hum. Gene Ther. 6:137-143; Paulus, W. et al. (1997) J. Neurosurg. 87:89-95). In both 25 cases, although preferential cell killing could be demonstrated, complete abolition of nonspecific cell killing was not achieved. Keyvani et al. (Life Sci. 64:1719-1724, 1999) used a tet repressor-based system for expressing an attenuated DT-A mutant, but these workers concluded that (1) expression but not toxicity of the DT-A mutant can be sufficiently controlled by a tetracycline-responsive promoter.

U.S. Pat. No. 7,582,290 to Rodriguez, R., et al. discloses replication-deficient Adenovirus (Ad) expressing the A subunit of diphtheria toxin (DT-A) driven by prostate-specific promoters for use in suicide gene therapy for prostate cancer. This patent describes a mutation of glycine to arginine in position 705 of the EF-2 protein that gives resistance to inhibition of protein synthesis by DT. The inventors in this patent assert that a major problem in the application of replicationdefective adenovirus in gene therapy is the presence of replication-competent adenovirus (RCA), which is generated by recombination between sequences in the Ad vector and homologous Ad sequences in the helper cells. These inventors also disclose a DT-resistant helper cell line, DPL, for packaging DT-expressing adenovirus for suicide gene therapy, in which the cells do not make RCA. These inventors further disclose that they amplified a 500 bp region from the EF-2 gene spanning the codon 705, from TSU cells (a prostate cancer cell line). Using site directed mutagenesis, these inventors changed codon 705 from "GGA" to "AGA" to code for arginine instead of glycine. Using homologous recombination they replaced glycine with arginine in position 705 of the EF-2 protein in PER.C6 cells (derived from diploid human embryonic retinoblasts ("HER") and described in U.S. Pat. Nos. 5,994,128, 6,265,212, 6,033,908, and 6,306, 652), and generated a DT-resistant helper cell line for packaging adenoviral vectors. These cells contain the Ad serotype 5 (Ad5) E1-A & E1-B encoding sequences (Ad5 neucleotides 459-3510) under the control of human phosphoglycerate 60 kinase (PGK) promoter. According to these inventors, these cells, used in conjunction with non-overlapping E1-deleted adenovirus, eliminates the presence of RCA in viral preps.

Wang et al., (Wang, C-Y, et al., Cancer Research 66: 5798-5806, 2006) described a recombinant baculovirus accommodating the transcriptional regulatory sequence of glial fibrillary acidic acid protein (GFAP) to drive the expression of DT-A gene in glioma cells. Because GFAP promoter is inac-

tive in insect cells, they were able to generate recombinant baculovirus carrying the DT-A toxic gene. However, a celltype specific promoter such as GFAP promoter displays relatively weak transcriptional activity compared to positive control sequences derived from viruses, e.g. the enhancer/ 5 promoter of human cytomegalovirus (CMV) immediateearly gene and therefore limits its applications.

Kohlschütter, et al., Toxins 2: 2754-2768, 2010 described AAV vectors carrying the DT-A gene, in which the Tet^R repressor system was used to decrease the expression of 10 DT-A. Even though the authors produced some AAV vectors carrying the DT-A gene in HEK293T cells, their AAV yields were generally 2 to 3 logs lower than AAV vectors that did not carry the DT-A gene, such as vectors carrying the PUMA gene (AAVTetO2-PUMA). The authors attributed the lower 15 titer to residual expression of the DTA protein.

U.S. Pat. No. 6,723,551 to Kotin et al. describes methods of production of adeno-associated virus (AAV) in insect cells. These inventors assert that introns comprised by AAV genes are not properly spliced in insect cells. These inventors pro- 20 duced AAV in insect cells by using AAV genes engineered to be devoid of introns. However, this patent neither teaches nor suggests growing vectors harboring toxic genes in insect cells.

There currently exists a need for additional compositions 25 and methods for producing suicide gene therapy vectors for therapeutic use such as use in killing cancer cells.

SUMMARY

In view of a need to grow viral vectors harboring toxic genes in insect cells, the present inventor has developed modified baculoviral and adeno-associated viral vectors comprising toxic genes, insect cells comprising such vectors, methods of making such vectors and cells, and methods of 35 Spodoptera frugiperda Sf21 cell. treatment that use such vectors.

A nucleic acid of the present teachings can be a nucleic acid for growing a toxic gene in an insect cell. In some configurations, a nucleic acid can comprise, consist essentially of, or consist of a sequence encoding a toxic polypeptide, and an 40 intron that interrupts the sequence, whereby an RNA comprising the intron can be spliced by mammalian cells but not by insect cells, to form in mammalian cells, but not in insect cells, a translatable mRNA that, upon translation, yields celltoxic levels of a toxic polypeptide. In some configurations, a 45 nucleic acid can comprise a sequence encoding a toxic polypeptide such as, without limitation, diphtheria toxin (DT-A), barnase, ricin, abrin, Pseudomonas exotoxin or a proapoptotic polypeptide. Sequences encoding such toxic polypeptides (and peptides) are well known to skilled artisans 50 (see, e.g., Ellerby, H. M., et al., Nature Medicine 5: 1032-1038, 1999) and are available from publically accessible resources such as, for example, the website of the National Center for Biotechnology Information. In some configurations, the nucleic acid can encode a toxic polypeptide such as 55 ods of growing a vector comprising a toxic gene in vitro. In a diphtheria toxin, for example DT-A. In some configurations, the nucleic acid can encode a toxic polypeptide such as bar-

In various configurations, an intron of the present teachings can be any intron which is not properly spliced out in insect 60 cells but is properly spliced by mammalian cells, such as, for example and without limitation, an intron from a human growth hormone gene or an intron from a SV40 large T antigen gene.

In various configurations, a nucleic acid of the present 65 teachings can further comprise an expression control sequence operably linked to the sequence encoding a toxic

polypeptide. An expression control sequence can be, for example, a promoter, an IRES, an enhancer and/or a combination thereof.

In non-limiting illustration, FIG. 1 presents genetic and transcriptional maps of a toxic gene such as a DT-A gene comprising an intron and operably linked to a promoter such as a CMV promoter. Upon introduction of a DT-A gene comprising an intron of the present teachings into a mammalian cell, the gene is transcribed, and mature DT-A mRNA is formed in the mammalian cell through intron splicing. The mature RNA is translated into functional DT-A protein to kill the cell. The numbers above the genetic map based on DT-A coding sequence (Genbank access no. X00703) indicate the nucleotide positions where the intron is inserted. CMVpr=cytomegalovirus promoter; DT-A=Diptheria Toxin A nucleic acid sequence; pA=polyadenylation signal.

In some embodiments, the present teachings include a viral vector comprising a nucleic acid as described supra. In various configurations, a viral vector can be, for example, a baculovirus, a retrovirus, an adenovirus, an adeno-associated virus (AAV) or a combination thereof, such as, for example, a baculovirus comprising AAV sequences, such as described, for example, in US Patent Application Publication 20090203071 but modified to also include sequences encoding a toxic gene in which the coding sequence is disrupted with an intron.

In some embodiments, the present teachings include an insect cell in vitro which comprises a nucleic acid described supra, or a viral genome comprising the nucleic acid as described supra.

In various configurations, an insect cell can be, without limitation, a cell of an established insect cell line known to skilled artisans, such as, without limitation, a Trichoplusia ni BTI-Tn-5B1-4 cell, a Spodoptera frugiperda Sf9 cell or a

In some embodiments, the present teachings include a cell culture comprising a plurality of cells described supra; and a culture medium. In various configurations, such cell lines can accumulate a virus such as, for example, AAV, wherein unconcentrated cell culture medium can comprise the virus at a titer greater than 10⁹ AAV genomes/ml, greater than 10¹⁰ AAV genomes/ml, greater than 1011 AAV genomes/ml, or greater than 10¹² AAV genomes/ml. For example, in various configurations, 1 liter of unconcentrated cultured cell medium can comprise at least 10¹³, at least 10¹⁴, or at least 10¹⁵ AAV viral particles within 3 days after infection of an insect cell culture with a baculovirus of the present teachings.

In various configurations, a cell line or cell culture of the present teachings can accumulate a baculovirus, wherein unconcentrated cell culture medium can comprise the virus at a titer greater than 10^9 pfu/l, greater than 10^{10} pfu/l, greater than 1011 pfu/l, or greater than 1012 pfu/l within 4 days following transfection.

In some embodiments, the present teachings include methvarious configurations, these methods include: providing a cell culture comprising insect cells; infecting or transfecting the cells with a nucleic acid or a virus of the present teachings; and incubating the cells under conditions suitable for virus production.

In some embodiments, the present teachings include methods of treating a cancer. In various configurations, these methods include administering a nucleic acid or a virus of the present teachings to a subject in need of therapy. In some configurations, the virus can be a baculovirus or an adenoassociated virus. A cancer subject to treatment using a nucleic acid or a virus of the present teachings can be any cancer, such

as, without limitation, a prostate cancer, a brain tumor, a cervical cancer or a nasopharyngeal carcinoma. In various embodiments of the present teachings, a virus of the present teachings, such as an AAV of the present teachings or a baculovirus of the present teachings, can be a virus that can infect a mammalian cell but cannot replicate within the mammalian cell.

In various embodiments, the present teachings include use of a nucleic acid or virus described supra for the treatment of a disease such as, for example, cancer.

In various embodiments, the present teachings include a nucleic acid or virus described herein for use in the treatment of a cancer. In various embodiments, the present teachings include a nucleic acid or virus described herein for use in the manufacture of a medicament for the treatment of a cancer.

In various embodiments, the present teachings include a recombinant baculovirus or nucleic acid comprising a toxic gene (such as, without limitation, a DT-A gene or a barnase gene) which further comprises an intron, such that a mammalian cell but not in an insect cell can express a mature mRNA 20 that can be translated by the host cell to produce a polypeptide that is lethal to the host cell. In some configurations, an intron that disrupts coding sequence of a toxic gene can be spliced from a transcript of the toxic gene by a mammalian cell, but not by an insect cell, for example as set forth in FIG. 1. Upon 25 introduction of a toxic gene comprising an intron into a mammalian cell (such as a human cell in vitro or in vivo), the cell can produce mature mRNA of the toxic gene. The mature mRNA can be translated by the mammalian cell into functional DT-A protein (or other toxic protein) to kill the cell.

In some embodiments, the present teachings include methods of producing recombinant baculovirus carrying a toxic gene comprising an intron in insect cells. In these embodiments, recombinant baculovirus can be generated according to methods well known to skilled artisans. Without limitation, 35 such methods can include, for example, transfecting Bacmid DNA's into insect cells in vitro, such as Sf9 cells, with a vector such as a Bacmid modified to comprise a toxic gene into which an intron is inserted.

Some embodiments of the present teachings include AAV vectors carrying a toxic gene such as a DT-A gene comprising an intron or a barnase gene comprising an intron. AAV vectors comprising a toxic gene with an intron can be produced in insect cells. Upon introduction into a host mammalian cell, a toxic gene comprised by an AAV vector of the present teachings can be transcribed and spliced in the mammalian cell to form a mature toxic gene mRNA (such as a DT-A mRNA or a barnase mRNA). A mature toxic gene mRNA can be translated by the host mammalian cell to yield a toxic protein (such as DT-A or barnase), thereby disabling or killing the host mammalian cell.

Some embodiments of the present teachings include methods of producing AAV vectors carrying a toxic gene such as, for example, a DT-A gene or barnase gene in insect cells. In these methods, a first vector comprising baculovirus and AAV 55 sequences, such as, for example, Bac-Rep-Cap (or Bac-in-Cap-inRep), and a second vector comprising baculovirus and ITR sequences as well as a toxic gene (such as, for example, DT-A or barnase) interrupted by an intron, can be contacted with a host insect cell to co-infect the host cell. An infected 60 cell can yield AAV comprising the toxic gene interrupted by an intron. Such infected cells grown in vitro can yield titers of recombinant AAV comprising a toxic gene, of at least 109 viral genomes/ml, at least 10¹⁰ viral genomes/ml, at least 10¹¹ viral genomes/ml, or at least 10¹² viral genomes/ml in uncon- 65 centrated culture medium within 3 days after infection of a culture of insect cells such as Sf9 cells.

6

Some embodiments of the present teachings include additional methods of producing AAV vectors carrying a toxic gene in insect cells. In these methods, an insect cell can be provided comprising a stably integrated transgene such as a transgene comprising AAV ITRs flanking a toxic gene (such as DT-A or barnase) comprising an intron. See, e.g., FIG. 5. A cell of these embodiments can be infected with Bac-Rep-Cap. Following infection with Bac-Rep-Cap, the cell can produce AAV vectors comprising a toxic gene (such as DT-A) comprising an intron. In various configurations, a population of infected cells grown in vitro can yield titers of recombinant AAV, of at least 109 viral genomes/ml, at least 1010 viral genomes/ml, at least 1011 viral genomes/ml, or at least 1012 viral genomes/ml in unconcentrated culture medium. In some configurations, such high can be obtained within about 3 days after infection.

In some embodiments, the present teachings include production of AAV vectors carrying toxic genes using insect cells (such as, for example, Sf9 cell) harboring stably integrated AAV genomes carrying inDTA or inBarnase. In various configurations, such cells can be infected with recombinant baculovirus carrying Rep and Cap genes for 3 days. The cell pellets can be harvested and processed to purify the AAV vectors.

Accordingly, in some embodiments, the present teachings include nucleic acids comprising a sequence encoding a toxic polypeptide, and an intron that interrupts the sequence, whereby the intron is spliced in mammalian cells but not in insect cells to form an mRNA that is translated to form celltoxic levels of the toxic polypeptide in mammalian cells but not in insect cells. In some configurations, the toxin polypeptide encoded by a toxin gene can be, without limitation, diphtheria toxin (DT-A), barnase, ricin, abrin, or Pseudomonas exotoxin. In some preferred configurations, the toxin can be diphtheria toxin (DT-A) or barnase, encoded by a diphtheria toxin (DT-A) gene or a barnase gene, respectively, but interrupted by an intron such as, without limitation, a human growth hormone intron or an SV40 large T-antigen intron. In various configurations, a nucleic acid of the present teachings can further comprise at least one expression element operably linked to the sequence. Such expression elements can include one or more of a promoter, an IRES, an enhancer and a combination thereof. In some configurations, expression elements comprised by a nucleic acid of the present teachings can include one or more of a CMV promoter, an AFP promoter, an AFP enhancer, a SURV promoter, a CXCR4 promoter, a TERT promoter, a COX2 promoter, and a CCKAR promoter. In some configurations, expression elements comprised by a nucleic acid of the present teachings can include one or more of a hAFP promoter, a hAFP enhancer, an hSURV promoter, a hCXCR4 promoter, an hTERT promoter, a hCOX2 promoter, and a hCCKAR promoter. In some configurations, an expression control element can be a promoter that can direct expression in tumor cells, such as an hSURV promoter or a CXCR4 promoter. In some preferred configurations, an expression element can be an hSURV or a CXCR4

In some embodiments, an intron that disrupts the sequence of a toxic gene can be any intron that is spliced by mammalian cells but not insect cells. In various configurations, the intron can be an artificial intron, a human growth hormone intron, or an SV40 large T-antigen intron.

In various embodiments, a nucleic acid or viral vector of the present teachings can comprise at least one ITR.

In some embodiments, a nucleic acid or viral vector of the present teachings can comprise, in 5' to 3' order, a first ITR, a promoter, a first portion of a toxic gene, an intron, a second

portion of the toxic gene, a polyadenylation signal, and a second ITR. In various configurations, the first ITR can be an AAV ITR, and the second ITR can be an AAV ITR.

Some embodiments of the present teachings include viral vectors comprising the nucleic acids described herein. In 5 some configurations, a viral vector can be, without limitation, a baculovirus, a retrovirus, an adenovirus, an adeno-associated virus (AAV) or a combination thereof, and in particular a vector can be a baculovirus, an adeno-associated virus (AAV), or a combination thereof. Non-limiting examples of AAV comprising a nucleic acid of the present teachings include AAV2 and AAV9, preferably AAV2.

Some embodiments of the present teachings include insect cells in vitro comprising the nucleic acids described herein. Various embodiments of the present teachings include individual insect cells in vitro, insect cell lines, insect cell cultures, and insect cell populations in vitro. In various configurations, an insect cell of the present teachings can include, without limitation, a Trichoplusia ni BTI-Tn-5B1-4 cell, a Spodoptera frugiperda Sf9 cell or a Spodoptera frugiperda 20 Sf21 cell; an insect cell population or cell culture can include, without limitation, Trichoplusia ni BTI-Tn-5B1-4 cells, Spodoptera frugiperda Sf9 cells, Spodoptera frugiperda Sf21 cells, and any combination thereof. In various configurations, an insect cell can comprise a nucleic acid which is comprised 25 by a viral genome. In some embodiments, an insect cell of the present teachings can comprise a virus which comprises a nucleic acid of the present teachings. In various configurations, a virus of these embodiments can be an AAV, a baculovirus, or a combination thereof. In some embodiments, an 30 insect cell of the present teachings can be stably transformed with a nucleic acid of the present teachings.

Embodiments of the present teachings include cell cultures such as insect cell cultures. In various configurations, a cell culture can include cells comprising a nucleic acid of the 35 present teachings, and a cell culture medium. In various configurations, a cell culture can comprise greater than 10° viral genomes/ml without concentration of the cell culture medium, greater than 10¹⁰ viral genomes/ml without concentration of the cell culture medium, greater than 10¹¹ viral 40 nucleic acid or virus of the present teachings for use in the genomes/ml without concentration of the cell culture medium, greater than 1012 viral genomes/ml without concentration of the cell culture medium. In various embodiments, a cell line, cell culture or cell population of the present teachings can comprise a baculovirus comprising a nucleic acid of 45 the present teachings. In various configurations, a cell line, cell culture or cell population can comprise baculovirus at greater than 10⁶ PFU/ml in unconcentrated culture medium, greater than 10⁷ PFU/ml in unconcentrated culture medium, greater than 10⁸ PFU/ml in unconcentrated culture medium, 50 or greater than 10° PFU/ml in unconcentrated culture medium.

Some embodiments of the present teachings include methods of growing a vector comprising a toxic gene in vitro. In various configurations, these methods comprise providing a 55 resentative AAV vectors carrying a toxic gene such as a DT-A cell culture comprising insect cells, infecting or transfecting the cells with a nucleic acid of the present teachings which comprises a sequence encoding a toxic polypeptide and an intron which interrupts the sequence, and incubating the cells under conditions suitable for virus production. In various 60 configurations, a nucleic acid can be comprised by a virus, such as a baculovirus, an AAV, or a combination thereof. Accordingly, in various configurations, these methods include: providing a cell culture comprising insect cells; and infecting the cells with a virus vector such as an AAV com- 65 prising a nucleic acid of the present teachings, and with a second vector such as Bac-inCap-inRep. The infecting can

occur over at least about 1 day, for at least 2 days, for at least 3 days, for about 3 days, for at least 4 days, for at least 5 days, for up to about 5 days, for at least 6 days, for up to about 6 days, for 7 days, or for up to about 7 days. In various configurations, these methods can further comprise lysing the cells to form a lysate comprising the AAV. Because a lysate can also include cellular debris, the methods can further comprise digesting the cellular debris with benzonase. In various configurations, an AAV comprising a nucleic acid of these methods can be any AAV, such as an AAV2 or an AAV9. In some configurations, the insect cells can be Trichoplusia ni BTI-Tn-5B1-4 cells, Spodoptera frugiperda Sf9 cells or Spodoptera frugiperda Sf21 cells. In some preferred configurations, the insect cells in these methods can be Spodoptera frugiperda Sf9 cells.

Some embodiments of the present teachings include methods of treating a disease or medical condition such as HIV infection, graft-versus-host disease, or cancer. In various configurations, these methods can comprise administering to a subject in need of therapy a therapeutically effective amount of a nucleic acid of the present teachings. In various configurations, the nucleic acid can be comprised by a virus, such as AAV, so that the methods comprise administering to a subject in need of therapy a therapeutically effective amount of a virus such as an AAV comprising a nucleic acid of the present teachings. In some preferred embodiments, the AAV can be AAV2 or AAV9, more preferably AAV2. In various configurations, a cancer that can be treated by the disclosed methods can be, without limitation, a prostate cancer, a breast cancer, a brain tumor, a cervical cancer or a nasopharyngeal carcinoma.

Some embodiments of the present teachings include use of a nucleic acid or virus of the present teachings for the treatment of HIV infection, graft-versus-host disease, or a cancer.

Some embodiments of the present teachings include a nucleic acid or virus of the present teachings for use in the treatment of HIV infection, graft-versus-host disease, or a

Some embodiments of the present teachings include a treatment of HIV infection, graft-versus-host disease, or a cancer.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates genetic and transcriptional maps of a toxic gene such as a DT-A gene comprising an intron and operably linked to a promoter such as a CMV promoter.

FIG. 2 illustrates a method of producing in an insect cell a recombinant baculovirus carrying a DT-A gene interrupted by the human growth hormone intron or a barnase gene interrupted by the SV40 large T-antigen intron and fused in-frame with GFP.

FIG. 3 illustrates genetic and transcriptional maps of repgene, modified to comprise an intron within the open reading

FIG. 4 illustrates a method of producing AAV vectors carrying a toxic gene such as a DT-A gene in insect cells.

FIG. 5 illustrates an alternative method of producing AAV vectors carrying a toxic gene such as a DT-A gene comprising of an intron in insect cells with stably integrated AAV-transgene. Bac, Rep, Cap and ITR are as described in US Patent Application Publication 20090203071.

FIGS. 6-11 illustrate maps of pFastBac shuttle plasmids that can be used in various configurations of the present teachings. Each vector comprises: Tn7R and Tn7L target

sites; an ampicillin resistance selection marker (AMP); a gentamicin resistance selection marker; an hGH intron that is not within a coding sequence; AAV ITR's; and an SV40pA 144 bp polyadenylation sequence, CATGGCCCAACTTGTTTATTGCAGCTTATAATGGTTA-

CAAATAAAGCAATAGCATCA
ATAAAGCATTTTTTTCACTGCAT-

TCTAGTTGTGGTTTGTCCAAACT CATCAATGTATCT-TATCATGTCTGGATCT (SEQ ID NO: 1). However, these components individually may not be required for practicing the various embodiments of the present teachings. Abbreviations: DT-A, diphtheria A fragment; CMV, cytomegalovirus promoter; hGH, human growth hormone intron; Bar, Barnase; GFP, green fluorescence protein; SV40, Simian virus 40 large T-antigen intron; hTERT, human telomerase reverse transcriptase promoter.

FIG. 6 illustrates a map of pFastBac shuttle plasmid comprising, between AAV ITR's, a CMV promoter operably linked to a DT-A coding sequence in which the vector comprises: Tn7R and Tn7L target sites; an ampicillin resistance selection marker; a gentamicin resistance selection marker; an hGH intron that is not within a coding sequence; AAV ITR's; and an SV40pA 144 bp polyadenylation sequence. Abbreviations: DT-A, diphtheria A fragment; CMV, cytomegalovirus promoter; hGH, human growth hormone intron.

FIG. 7 illustrates a pFastBac shuttle plasmid comprising, 25 between AAV ITR's, a CMV promoter operably linked to a DT-A coding sequence interrupted by human growth hormone intron, in which the vector comprises: Tn7R and Tn7L target sites; an ampicillin resistance selection marker; a gentamicin resistance selection marker; an hGH intron that is not 30 within a coding sequence; AAV ITR's; and an SV40pA 144 bp polyadenylation sequence. Abbreviations: DT-A, diphtheria A fragment; CMV, cytomegalovirus promoter; hGH, human growth hormone intron; SV40, Simian virus 40 large T-antigen intron.

FIG. 8 illustrates a map of a pFastBac shuttle plasmid comprising, between AAV ITR's, a CMV promoter operably linked to a Barnase coding sequence fused in-frame with GFP coding sequence, in which the vector comprises: Tn7R and Tn7L target sites; an ampicillin resistance selection marker; a 40 gentamicin resistance selection marker; an hGH intron that is not within a coding sequence; AAV ITR's; and an SV40pA 144 bp polyadenylation sequence. Abbreviations: CMV, cytomegalovirus promoter; hGH, human growth hormone intron; Bar, Barnase; GFP, green fluorescence protein; SV40, 45 Simian virus 40 large T-antigen intron.

FIG. 9 illustrates a map of a pFastBac shuttle plasmid comprising, between AAV ITR's, a CMV promoter operably linked to a Barnase coding sequence interrupted by an SV40 large T-antigen intron, and fused in-frame with GFP coding sequence, in which the vector comprises: Tn7R and Tn7L target sites; an ampicillin resistance selection marker; a gentamicin resistance selection marker; an hGH intron that is not within a coding sequence; AAV ITR's; and an SV40pA 144 bp polyadenylation sequence. Abbreviations: CMV, cytomegalovirus promoter; hGH, human growth hormone intron; Bar, Barnase; GFP, green fluorescence protein; SV40, Simian virus 40 large T-antigen intron.

FIG. 10 illustrates a map of a pFastBac shuttle plasmid comprising, between AAV ITR's, an hTERT promoter operably linked to a DT-A coding sequence interrupted by human growth hormone intron, in which the vector comprises: Tn7R and Tn7L target sites; an ampicillin resistance selection marker; a gentamicin resistance selection marker; an hGH intron that is not within a coding sequence; AAV ITR's; and 65 an SV40pA 144 bp polyadenylation sequence. Abbreviations: DT-A, diphtheria A fragment; hGH, human growth

10

hormone intron; SV40, Simian virus 40 large T-antigen intron; hTERT, human telomerase reverse transcriptase promoter

FIG. 11 illustrates a map of a pFastBac shuttle plasmid comprising, between AAV ITR's, an hTERT promoter operably linked to a GFP coding sequence, in which the vector comprises: Tn7R and Tn7L target sites; an ampicillin resistance selection marker; a gentamicin resistance selection marker; an hGH intron that is not within a coding sequence; AAV ITR's; and an SV40pA 144 bp polyadenylation sequence. Abbreviations hGH, human growth hormone intron; Bar, Barnase; GFP, green fluorescence protein; SV40, Simian virus 40 large T-antigen intron; hTERT, human telomerase reverse transcriptase promoter.

FIG. 12 illustrates generation of recombinant baculoviruses in Sf9 cells following transfection with Bacmid DNA (FIG. 12A, FIG. 12C), and amplification of the recombinant baculoviruses in Sf9 cells by infection (FIG. 12B, FIG. 12D).

FIG. 13 illustrates genetic and transcriptional maps of representative recombinant baculoviruses carrying a DT-A gene interrupted by a human growth hormone intron, and a Barnase gene interrupted by an SV40 large T-antigen intron and fused in-frame with GFP.

FIG. 14 illustrates the killing effects on mammalian (human embryonic kidney HEK293) cells by transduction with recombinant baculoviruses harboring toxic genes for 48 hours

FIG. 15 illustrates a method of producing AAV vectors carrying a DT-A gene comprising the human growth hormone intron or the barnase gene comprising the SV40 large T-antigen intron and fused in-frame with GFP gene in insect cells that carries a stably integrated AAV-transgene.

FIG. 16 illustrates genetic and transcriptional maps of representative AAV vectors carrying a DT-A gene comprising a buman growth hormone intron, or a Barnase gene comprising a SV40 large T-antigen intron and fused in-frame with the GFP gene.

FIG. 17 illustrates the killing effect of AAV2-CMV-inDTA (hGH) on mammalian cells.

FIG. **18** illustrates the killing effects on mammalian cells by transduction with AAV vectors harboring toxic genes.

FIG. 19 illustrates representative result of cell killing by AAV2-hSURV-inDTA(hGH).

FIG. 20 illustrates cell viability assay of tumor cells by AAV2 vectors carrying DT-A under control of various tumor-specific promoters. The cells were seeded on 96-well plates and transduced with AAV2 vectors at 4-fold serial dilutions for 4 days and the cell viability was assayed with the CellTiter Glo Luminescent Cell Viability Assay kit. (a) HepG2 cells, (b) Hep3B cells, and (c) BE(2)-M17 cells.

DETAILED DESCRIPTION

within a coding sequence; AAV ITR's; and an SV40pA 144 bp polyadenylation sequence. Abbreviations: CMV, cytomegalovirus promoter; hGH, human growth hormone intron; Bar, Barnase; GFP, green fluorescence protein; SV40, Simian virus 40 large T-antigen intron.

FIG. 10 illustrates a map of a pFastBac shuttle plasmid comprising, between AAV ITR's, an hTERT promoter operably linked to a DT-A coding sequence interrupted by human growth hormone intron, in which the vector comprises: Tn7R

FIG. 1 illustrates exemplary genetic and transcriptional maps of a DT-A gene comprising an intron and operably linked to a CMV promoter. Upon introduction of a DT-A gene comprising an intron of the present teachings into a mammalian cell, the gene is transcribed, and mature DT-A mRNA is

formed in the mammalian cell through intron splicing. The mature RNA is translated into functional DT-A protein to kill the cell. The numbers above the genetic map based on DT-A coding sequence (Genbank access no. X00703) indicate the nucleotide positions where the intron is inserted. 5 CMVpr=cytomegalovirus promoter; DT-A=Diptheria Toxin A nucleic acid sequence; pA=polyadenylation signal.

The methods and compositions described herein utilize laboratory techniques well known to skilled artisans, and can be found in laboratory manuals such as Sambrook, J., et al., 10 Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2001; Methods In Molecular Biology, ed. Richard, Humana Press, NJ, 1995; Spector, D. L. et al., Cells: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring 15 Harbor, N.Y., 1998; and Harlow, E., Using Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1999. Additional references describing methods of expression of heterologous polypeptides in insect cells, as well as methods of introducing vectors 20 and nucleic acids into insect cells and methods of maintaining insect cell cultures include, for example, O'Reilly et al., Baculovirus Expression Vectors, A Laboratory Manual, Oxford Univ. Press, 1994; Samulski et al., J. Vir. 63: 3822-3288, 1989; Kajigaya et al., Proc. Nat'l. Acad. Sci. USA 88: 25 4646-4650, 1991; Ruffing et al., J. Vir. 66: 6922-6930, 1992; Kimbauer et al., Vir. 219: 37-44, 1996; Zhao et al., Vir. 272: 382-393, 2000; and Samulski et al., U.S. Pat. No. 6,204,059.

Experiments described herein may also make use of the following materials and methods.

Cell culture. HEK293 cells were maintained at 37° C. in Dulbecco's modified Eagle's medium (Invitrogen, Carlsbad, Calif.) containing 100 U/ml of penicillin and 100 mg/ml of streptomycin, and supplemented with 10% fetal calf serum (Sigma-Aldrich, St. Louis, Mo.). HepG2, Hep3B and WI38 35 cells were maintained at 37° C. in EMEM complete growth medium (American Type Culture Collection) containing 100 U/ml of penicillin and 100 mg/ml of streptomycin, and supplemented with 10% fetal calf serum. BE (2) M17 cells (American Type Culture Collection) were maintained in 50% 40 EMEM+50% F12 complete growth media containing 100 U/ml of penicillin and 100 mg/ml of streptomycin, and supplemented with 10% fetal calf serum. Spodoptera frugiperda Sf9 cells (Invitrogen, Carlsbad, Calif.) were maintained at 28° C. in ESF921 serum-free medium (Expression 45 Systems, Woodland, Calif.) containing 100 U/ml of penicillin and 100 mg/ml of streptomycin (Invitrogen, Carlsbad,

Generation and titration of recombinant baculoviruses. Plasmids constructed as described above were used for trans- 50 forming DH10Bac-competent cells to generate recombinant bacmids. The bacmids containing the target genes were used for generating recombinant baculoviruses in accordance with the manufacturer's protocol (Invitrogen, Carlsbad, Calif.), with minor modifications. Briefly, 2 ng of the plasmid DNA 55 was used for transforming 20 µl of DH10Bac-competent cells. After 4 hours of incubation at 37° C. in 500 µl of SOC medium, 25 and 2.5 µl of the culture were plated separately in selection plates and incubated for 48 hours to allow white/ blue colonies to form. Generally, three white colonies were 60 picked for each construct and miniprep bacmid DNAs were prepared. The bacmid DNAs were used for transfecting Sf9 cells to generate recombinant baculoviruses. The recombinant baculoviruses were amplified once and titers determined with real-time quantitative PCR (qPCR) assay and converted to plaque-forming units (pfu) based on empirical studies in which 20 copies was converted into 1 pfu.

12

AAV vector production, purification and titration. The methods for AAV vector production, purification and titration have been described previously (Chen, H., Mol Ther 16: 924-930, 2008). Briefly, Sf9 cells were grown at 28° C. to ~1×10⁷ cells/ml in ESF921 serum-free medium containing 100 U/ml of penicillin and 100 μg/ml of streptomycin, and diluted to $\sim 5 \times 10^6$ cells/ml before infection. Double infection was employed to produce AAV vectors. Five multiplicity of infection (moi) of Bac-AAV-transgene, and 10 moi of BacinCap-inRep were used to infect Sf9 cells at 28° C. for 3 days to produce AAV vectors. After 3 days of infection, cell pellets were collected by centrifugation at 3,000 rpm for 15 minutes. The cell pellets were lysed in a modified Sf9 lysis buffer (50 mM Tris-HCl, pH8.0, 1% sarkosyl, 1% Triton X-100, 2 mM MgCl₂) and cellular nucleic acids (DNA and RNA) were digested using benzonase (Sigma-Aldrich, St. Louis, Mo.). The cell lysates were cleared by centrifugation at 8,000 rpm for 20 min and supernatants were subjected to 2 rounds of ultracentrifugation to purify the AAV vectors. The AAV vectors were buffer-exchanged into PBS containing 0.001% pluronic F-68 (Sigma-Aldrich, St. Louis, Mo.) with 2 PD-10 desalting columns (GE HealthCare Bio-Science Corp, Piscataway, N.J.). After purification, the AAV vectors were titrated with real-time quantitative PCR (qPCR) method.

Cell proliferation assay. HEK293 cells were grown in 24-well plate (1.5e+5 cells/well) overnight and transduced with AAV2 vectors (1.5e+9 vg/well) for 48 hours. The cells were then trypsinized and cell number counted. The cells were further cultivated for another 48 hours until reaching confluency and trypsinized, cell number counted and then expand into larger vessels. After another 72 hour cultivation, the cells were trypsinized and counted. Viable cells were counted with trypan blue staining.

Cell viability assay. The CellTiter Glo Luminescent Cell Viability Assay kit was used to test the cell viability according to Manufacturer's protocol (Promega, Madison, Wis.). Briefly, the cells (WI38, HepG2, Hep3B, and BE (2) M17) were seeded on 96-well plates at 3.2e+4 cells/well overnight and transduced with AAV2 vectors at 4-fold serial dilutions for 4 days. The reagent was reconstituted and added to the cells. After mixing on an orbital shaker for 2 minutes to lyse the cells, the plate was incubated at room temperature for 10 minutes and then the luminescent signals were recorded.

As used in the description, drawings and any appended claims, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context indicates otherwise.

The present inventor has developed compositions and methods for producing a vector comprising a toxic gene in an insect cell, as well as insect cell cultures that can include a vector comprising a toxic gene, and can produce virus such as an AAV to a titer of at least 10^9 viral genomes/ml, at least 10^{10} viral genomes/ml, at least 10^{11} viral genomes/ml or at least 10^{12} viral genomes/ml, in unconcentrated culture medium. In various configurations, a cell culture can produce a baculovirus to a titer of at least 10^6 plaque forming units (PFU)/ml, at least 10^7 PFU/ml, at least 10^8 PFU/ml, at least 10^9 PFU/ml or at least 10^{10} PFU/ml, in unconcentrated culture medium.

Insect cells that can be used in various configurations of the present teachings can be any insect cells that can grow in an in vitro culture. Such cells are well known to skilled artisans and include, without limitation, those disclosed in Kost, T. A., et al., Nature Biotechnology 23: 567-575, 2005, and references cited therein.

EXAMPLES

The following examples are illustrative of various embodiments of the present teachings and are not intended to limit

the scope of any claim. Persons of skill in the art will recognize that many variations are possible that are within the scope of the present teachings.

Example 1

This example illustrates structure and construction of plasmid pFB-CMV-DTA, a pFastBac shuttle plasmid (Invitrogen Corporation, Carlsbad, Calif.) comprising a CMV promoter operably linked upstream to a DT-A coding sequence (FIG. 10

To construct this plasmid, a plasmid containing the DT-A gene (GenBank access no. X00703) was digested with restriction endonucleases EcoRI and BamHI to generate a fragment containing a DT-A coding sequence with EcoRI and BamHI sticky ends. This fragment was ligated to the EcoRI and BamHI sticky ends. This fragment was ligated to the EcoRI and BamHI sites of plasmid pFB-AAV-CMV-SV40pA to create pFB-CMV-DTA. To insert the human growth hormone intron into the DT-A gene, a PCR method was employed. First, the upstream junction sequence together with the 20 5'-DT-A sequence from nucleotide numbers 1 to 103 were amplified using forward primer 5'-GATTATGATCAC-TAGTCGAG-3' (SEQ ID NO: 2) and reverse primer 5'-GGGCGCTTACCTTTTTGAATGGAATCTACA-3'

14

(SEQ ID NO: 3) (bold typeface indicates human growth hormone intron sequence). The human growth hormone intron was amplified with forward primer 5'-ATTCAAAAAGG-TAAGCGCCCCTAAAATCCC-3' (SEQ ID NO: 4) (bold typeface indicates human growth hormone intron sequence) and reverse primer 5'-TTTTGTATACCTGGGGAGAAAC-CAGAGGGC-3' (SEQ ID NO: 5) (italic typeface indicates restriction site for BstZ17I; bold typeface indicates human growth hormone intron sequence). These two PCR fragments were then joined together through a second PCR amplification with forward primer 5'-GATTATGATCACTAGTC-GAG-3' (SEQ ID NO: 6) and reverse primer 5'-TTTTG-TATACCTGGGGAGAAACCAGAGGGC-3' (SEQ ID NO: 7). The joined PCR fragment was then digested with restriction endonucleases EcoRI and BstZ17I and ligated to the EcoRI and BstZ17I sites of pFB-CMV-DTA to create pFB-CMV-inDTA (hGH) (FIG. 1, FIG. 7), and to the EcoRI and BstZ17I sites of pFB-CMVtetO-DTA-p10-TetR to create pFB-CMVtetO-inDTA-p10-TetR. The expression cassette was verified by DNA sequencing analysis.

The DNA sequence of the DT-A gene (GenBank access no. X00703) used in this example is:

(SEQ ID NO: 8) qtqaqcaqaaaactqtttqcqtcaatcttaataqqqqcqctactqqqqataqqqqcccaccttcaqcccatqcaqqcqctqatqttqt tqattcttctaaatatttqtqatqqaaaacttttcttcqtaccacqqqactaaacctqqttatqtaqattccattcaaaaaqqtatacaaaaqqca gaaaacccgctctctggaaaagctggaggcgtggtcaaagtgacgtatccaggactgacgaaggttctcgcactaaaagtggataatgcc qaaactattaaqaaaqaqttaqqtttaaqtctcactqaaccqttqatqqaqcaaqtcqqaacqqaaqaqtttatcaaaaqqttcqqtqatqqt qcttcqcqtqtaqtqctcaqccttcccttcqctqaqqqqaqttctaqcqttqaatatattaataactqqqaacaqqcqaaaqcqttaaqcqta gaacttgagattaattttgaaacccgtggaaaacgtggccaagatgcgatgtatgagtatatggctcaagcctgtgcaggaaatcgtgtcag tqqccctatcaaaaataaaatqaqcqaaaqtcccaataaaacaqtatctqaqqaaaaaqqctaaacaatacctaqaaqaatttcatcaaacq gcattagagcatcctgaattgtcagaacttaaaaccgttactgggaccaatcctgtattcgctggggctaactatgcggcgtgggcagtaaaccgtaaaccgtaaaccgtaaaccgtaaaccgtaaaccgtaaaccgtaaaccgtaaaccgtaaaccgtaaaccgtaaaccagtaaaccgtaaaccgaaccaatcctgaaaccagtaaaccgtaaaccagtaaaccgtaaaccagtaaccagtaaccagtaaccagtaaaccagtaaccagtaaccagtaaccagtaaccagtaaccagtaaccagtaaccagtaaccagtaac $\tt gttgcgcaagttatcgatagcgaaacagctgataatttggaaaagacaactgctgctctttcgatacttcctggtatcggtagcgtaatgggca$ ${f ggagagetagttgatattggtttegetgeatataattttgtagagagtattateaatttatteaagtagtteataattegtataategtecegegtat$ cgttaataagtccaagactcatatttccgtaaatggtcggaaaataaggatgcgttgcagagctatagacggtgatgtaactttttgtcgcccta ${\tt cggattccataggcgttcttgggtaccagaaaacagtagatcacaccaaggttaattctaagctatcgctatttttttgaaatcaaaagctga.$

DT-A coding sequence comprising the hGH intron is as follows:

(SEQ ID NO: 39)

 ${\tt ATGGGCGCTGATGATGTTGATTCTTCTAAATCTTTTGTGATGGAAAACTTTTCTT}$

 ${\tt CGTACCACGGGACTAAACCTGGTTATGTAGATTCCATTCAAAAAGgtaagcgccctaaaatc}$

-continued

Example 2

This example illustrates structure and construction of plasmid pFB-CMVtetO-DTA-p10-TetR. To construct pFB-CM-VtetO-DTA-p10-TetR, a p10-driven TetR expression cassette was released from a plasmid by digestion with restriction endonucleases HindIII and AvrII. The released fragment was inserted into HindIII and AvrII sticky ends of plasmid pFB-CMV-DTA that had been digested with restriction endonucleases HindIII and AvrII.

Example 3

This example illustrates insertion of mammalian introns to $$_{\rm 35}$$ disrupt toxin gene ORFs.

To generate the vectors of some embodiments of the present teachings, the human growth hormone (hGH) intron was inserted into the DT-A ORF between nucleotides 103 and 104 (the first letter of start codon ATG is assigned as nucleotide No. 1). The SV40 large T antigen (SV40LT) intron was inserted into the barnase ORF between nucleotides 9 and 10. The DT-A and barnase ORFs without intron interruption were used as controls. All the toxin coding sequences with or

without intron interruption were cloned into the pFastBac shuttle plasmid and the schematic depiction of the expression cassettes are shown in FIG. 3.

16

FIG. 3 illustrates genetic and transcriptional maps of representative recombinant baculoviruses carrying the toxin expression cassettes flanked by AAV ITRs. AAV vectors were produced by co-infecting insect cells with a second recombinant baculovirus carrying AAV rep and cap genes. Upon introduction of the baculoviral or AAV vectors into a mammalian cell, mature toxin mRNA is formed through intron splicing and translated into functional protein to kill the cell. (a) DT-A gene inserted with hGH intron and under control of various tumor specific promoters. The numbers above the genetic map based on DT-A coding sequence (Genbank access no. X00703) indicate the nucleotide positions where the intron is inserted. (b) Barnase gene inserted with SV40LT antigen intron and fused in-frame with GFP gene. The numbers above the genetic map are based on barnase coding sequence (Genbank access no. M14442), and indicate the nucleotide positions where the intron is inserted. (c) DT-A and barnase genes without intron insertion.

The detailed sequence of barnase coding sequence comprising the SV40LT antigen intron is as follows.

(SEQ ID NO: 40)

AGGGCAAAAGCGGACGAACATGGCGTGAAGCGGATATTAACTATACATCAGGCTTC

AGAAATTCAGACCGGATTCTTTACTCAAGCGACTGGCTGATTTACAAAACAACGGA

CCATTATCAGACCTTTACAAAAATCAGAATGGTGAGCAAGGGC

Example 4

This example illustrates structure and construction of plasmid pFB-CMV-Bar-GFP comprising a CMV promoter operably linked upstream to a barnase coding sequence fused in-frame with a green fluorescent protein (GFP) coding sequence (FIG. 8).

To construct pFB-CMV-Bar-GFP (FIG. 8), barnase coding sequence (GenBank access no. M14442) was amplified from plasmid pF1A-T7 (Promega, Madison Wis.) with forward primer 5'-CCCGAATTCGCCACCATGGCACAGGT-TATCAAC-3' (SEQ ID NO: 9) (italic typeface indicates restriction site for EcoRI) and reverse primer 5'-TGCTCAC-CATTCTGATTTTTGTAAAGGTCT-3' (SEQ ID NO: 10). The GFP coding sequence (GenBank access no. U55762) was

18

amplified from pFB-GFP plasmid with forward primer 5'-CAAAAATCAGAATGGTGAGCAAGGGCGAGG-3' (SEQ ID NO: 11) and reverse primer 5'-GGGGGGTACCT-CATTACTTGTACAGCTCGTCC-3' (SEQ ID NO: 12) (italic typeface indicates restriction site for KpnI). A second round of PCR was performed to fuse Barnase coding sequence with GFP coding sequence together using forward primer 5'-CCCGAATTCGCCACCATGGCACAGGT-TATCAAC-3' (SEQ ID NO: 13) and reverse primer 5'-GGGGGGTACCTCATTACTTGTACAGCTCGTCC-3' (SEQ ID NO: 14). The fused PCR fragment was digested with restriction endonucleases EcoRI and KpnI and ligated to the EcoRI and KpnI sites of pFB-CMV-inDTA (hGH) to replace the DT-A sequence and create pFB-CMV-Bar-GFP.

DNA sequence of a barnase gene used in this example (GenBank access no. M14442) is:

(SEQ ID NO: 15)

The DNA sequence of a GFP gene used in this example is:

(SEQ ID NO: 16)

tagttattaatagtaatcaattacggggtcattagttcatagcccatatatggagttccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgaaatcaacqqqactttccaaaatqtcqtaacaactccqccccattqacqcaaatqqqqqqtaqqqcqtqtacqqtqqqaqqtctatataaqc agagctggtttagtgaaccgtcagatccgctagcgctaccggactcagatctcgagctcaagcttcgaattctgcagtcgcagtcgaccgcg qqcccqqqatccaccqqtcqccaccatqqtqaqcaaqqqcqaqqaqctqttcaccqqqqtqqtqcccatcctqqtcqaqctqqacqq cgacgtaaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcacc gcag cac gact tette a agteege cat gee ega agget a egt e caggagege accat et tette a aggaega egge a actae agace egge agget a egge egge agget agggcacaagctggagtacaactacaacagccacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaacttcaagatcc a caac cacta cet gag cacc cag teeg cect gag caa aga ceccaa cgag aa gegegat cacat gg teet get gg ag t teg t gac cg cecaa cgag aa gegegat cacat gg teet get gg ag t teg t gac cg cecaa cgag aa gegegat cacat gg teet gg ag t teg t gac cg cacat gag ag t cacat gg t cet gag cacat gag ag t cacat gg t cet gag cacat gag ag t cacat gg t cet gag ag t cacat gg t cet gag ag t cacat gg t cacat gg t cet gag ag t cacat gg t cacatgccgggatcactctcggcatggacgagctgtacaagtaaagcggccgcgactctagatcataatcagccataccacatttgtagaggttttacaaataaagcaatagcatcacaaatttcacaaataaagcatttttttcactgcattctagttgtggtttgtccaaactcatcaatgtatcttaaggc

-continued $\tt gtaaattgtaagcgttaatattttgttaaaattcgcgttaaatttttgttaaatcagctcattttttaaccaataggccgaaatcggcaaaatccctta$ taaatcaaaagaatagaccgagatagggttgagtgttgttccagtttggaacaagagtccactattaaagaacgtggactccaacgtcaaag ggcgaaaaaccgtctatcagggcgatggcccactacgtgaaccatcaccctaatcaagtttttttggggtcgaggtgccgtaaagcactaaat gagogggcgctagggggctggcaagtgtagcggtcacgctgcgcgtaaccaccaccaccgccgcgcttaatgcgccgctacagggcg cqtcaqqtqqcacttttcqqqqaaatqtqcqcqqaacccctatttqtttatttttctaaatacattcaaatatqtatccqctcatqaqacaataac cctqataaatqcttcaataatattqaaaaaqqaaqtcctqaqqcqqaaaqaaccaqctqtqqaatqtqtqtcaqttaqqqtqtqqaaaqt gg caga agt at g caaag cat g cat ct caat tag t cag caac cat agt coego contaac to coego coegoaqqcttttttqqaqqcctaqqcttttqcaaaqatcqatcaaqaqacaqqatqqqttqtttcqcatqattqaacaaqatqqattqcacqca ggttctccggccgcttgggtggagaggctattcggctatgactgggcacaacagacaatcggctgctctgatgccgccgtgttccggctgt tggccacgacgggggttccttgcgcagctgtgctcgacgttgtcactgaagcgggaagggactggctgctattgggcgaagtgccgggg caggatctcctgtcatctcaccttgctcctgccgagaaagtatccatcatggctgatgcaatgcggcggctgcatacgcttgatccggctacc gagcatcaggggctcgcgccagccgaactgttcgccaggctcaaggcgagcatgcccgacggcgaggatctcgtcgtcgtgacccatggcg atgeetgettgeegaatateatggtggaaaatggeegettttetggatteategaetgtggeeggetgggtgtgggggaeegetateaggae ${\tt atagegttggctaccogtgatattgctgaagagcttggcggcgaatgggctgaccgcttcctcgtgctttacggctatcgccgctcccgattcg}$ tcacgagatttcgattccaccgccgccttctatgaaaggttgggcttcggaatcgttttccgggacgccggctggatgatcctccagcgcg ggateteatgetggagttettegeceaceetagggggaggetaaetgaaacaeggaaggagacaataceggaaggaaecegegetatga cggcaataaaaagacagaataaaacgcacggtgttgggtcgtttgttcataaacgcggggttcggtcccagggctggcactctgtcgatac cccaccgagaccccattggggccaatacgcccgcgtttcttccttttccccaccccacccccaagttcgggtgaaggcccagggctcgc ggtgaagateetttttgataateteatgaceaaaateeettaaegtgagttttegtteeactgagegteagaeeeegtagaaaagateaaagga tettettqaqateetttttttetqeqeqtaatetqetqettqcaaacaaaaaaccaeeqetaccaqeqqtqqtttqtttqccqqatcaaqaqeta ccaactctttttccqaaqqtaactqqcttcaqcaqaqcqcaqataccaaatactqtccttctaqtqtaqccqtaqttaqqccaccacttcaaqa $act \verb|ctgtag| cacegoeta cataceteget est cate etget acceast gget get get get gget gg etget g$ qaactqaqatacctacaqcqtqaqctatqaqaaaqcqccacqcttcccqaaqqqaqaaaqqcqqacaqqtatccqqtaaqcqqcaqq qtcqqaacaqqaqaqcqcacqaqqqqaqcttccaqqqqqaaacqcctqqtatctttataqtcctqtcqqqtttcqccacctctqacttqaqc ${\tt gtegatttttgtgatgetegteaggggggggggggetatggaaaaaegeeageaaegeggeetttttaeggtteetggeettttgetggeetttt$ tgctcacatgttctttcctgcqttatcccctgattctqtqqataaccqtattaccqccatgcat.

Example 5

This example illustrates structure and construction of plasmid pFB-CMV-InBar(SV40)-GFP, which comprises a CMV opromoter operably linked upstream to a barnase coding sequence that has an inserted SV40 large T antigen intron (SV40) and is fused in-frame with a GFP coding sequence (FIG. 9).

To insert the SV40 large T antigen intron into barnase and 65 construct pFB-CMV-inBar(SV40)-GFP (FIG. 9), a PCR method was employed. The 5'-portion of the barnase coding

sequence together with a full-length SV40 large T-antigen intron was PCR amplified from a SV40 plasmid (pUCSV40-B2E, ATCC, Manassas, Va.) with forward primer 5'-CCCCGAATTCGCCACCATGGCACAGG-TATTTGCTTCTTCCTTAAA-3' (SEQ ID NO: 17) (italic typeface indicates the EcoRI restriction site; bold typeface indicates SV40 large T-antigen intron sequence) and reverse primer 5'-TGTTGATAACCTAAAATACACAAACAATTA-3' (SEQ ID NO: 18) (bold typeface indicates SV40 large T-antigen intron sequence). The 3'-portion of the barnase coding sequence together with GFP coding sequence was

PCR amplified with forward primer 5'-TGTATTTTAGGT-TATCAACACGTTTGACGG-3' (SEQ ID NO: 19) (bold typeface indicates SV40 large T-antigen intron sequence), and the reverse primer 5'-GGGGGGTACCTCATTACTTG-TACAGCTCGTCC-3' (SEQ ID NO: 20) with pFB-CMV-5Bar-GFP as template A second PCR was performed to join these two PCR fragments together with the forward primer 5'-CCCCGAATTCGCCACCATGGCACAGG-

TATTTGCTTCCTTAAA-3' (SEQ ID NO: 21) and the reverse primer 5'-GGGGGGTACCTCATTACTTGTA-CAGCTCGTCC-3' (SEQ ID NO: 22). The joined PCR fragment was digested with restriction endonucleases EcoRI and KpnI and ligated to the EcoRI and KpnI sites of pFB-CMV-inDTA (hGH) to replace the DTA sequence and create pFB-CMV-inBar(SV40)-GFP.

Example 6

This example illustrates structure and construction of plasmid pFB-hTERT-inDTA (hGH) which comprises a human ²⁰ telomerase reverse transcriptase promoter (hTERT) operably linked upstream to a DT-A coding sequence with an inserted human grow hormone intron (FIG. 10).

To construct pFB-hTERT-inDTA (hGH) (FIG. 10), hTERT was amplified using PCR from genomic DNA purified from human embryonic kidney HEK293 cells with forward primer 5'-GCGCACGCGTATCATCAGCTTTTCAAAGAC-3' (SEQ ID NO: 23) (italic typeface indicates restriction site for MluI) and reverse primer 5'-CGCGACCGGTCGCTGCCT-GAAACTCGCGCC-3' (SEQ ID NO: 24) (italic typeface indicates restriction site for AgeI). The PCR fragment was digested with MluI and AgeI and ligated to the MluI and AgeI sites of pFB-CMV-inDTA (hGH) to create pFB-hTERT-in-DTA (hGH).

Example 7

This example illustrates structure and construction of plasmid pFB-hTERT-GFP (hGH) which comprises a human telomerase reverse transcriptase promoter (hTERT) operably 40 linked upstream to a green fluorescent protein (GFP) coding sequence (FIG. 11).

To construct pFB-hTERT-GFP, pFB-CMV-GFP was digested with restriction endonucleases KpnI and AgeI to remove the CMV promoter, and pFB-hTERT-inDTA (hGH) 45 was also digested with the same restriction enzymes to release a fragment comprising the hTERT promoter. This fragment was ligated into the digested pFB-CMV-GFP (without the CMB promoter) to generate pFB-hTERT-GFPs.

Example 8

This example illustrates production of recombinant baculoviruses.

In these experiments, toxin-coding sequences with or without intron interruption were cloned into the pFastBac shuttle plasmid as described in Example 3. Schematic depiction of the expression cassettes are shown in FIG. 3. The resultant pFastBac plasmids were used to transform DH10Bac competent bacteria and bacmid DNAs from white colonies were 60 prepared. The bacmid DNAs were used to produce recombinant baculoviruses as described above. The results, as illustrated in FIG. 12, show that no recombinant baculovirus could be generated from the bacmid DNAs containing the DT-A or barnase ORFs without intron insertion, whereas normal levels of recombinant baculoviruses were generated and amplified from the bacmid DNAs containing the DT-A or barnase

22

ORFs interrupted by the mammalian introns. The failure to generate recombinant baculovirus with bacmid DNAs containing the toxin genes without intron interruption demonstrates that DT-A or barnase is lethal to the insect cells even though the toxin genes were under control of the CMV promoter (not an insect promoter). On the other hand, the successful generation and amplification of recombinant baculoviruses from bacmid DNAs containing intron-interrupted toxin genes indicate that both the hGH and SV40LT introns were not spliced in insect cells and therefore no toxins were produced due to the interruption of the DT-A and barnase ORFs.

FIG. 12 shows the generation of recombinant baculoviruses in Sf9 cells by transfection with Bacmid DNA (A & C), and amplification of the recombinant baculoviruses in Sf9 cells by infection (B & D).

In these experiments, baculovirus titers were determined from supernatants harvested 4 days post transfection or 3 days post amplification. CMV-inDTA (hGH), recombinant baculovirus harboring DT-A coding sequence comprising human growth hormone intron (hGH) under control of CMV promoter; CMV-GFP, recombinant baculovirus harboring GFP coding sequence under control of CMV promoter; CMV-Bar-GFP, recombinant baculovirus harboring barnase coding sequence fused in-frame with GFP; CMV-inBar (SV40)-GFP, recombinant baculovirus harboring Barnase coding sequence comprising the SV40 large T-antigen intron and fused in-frame with the GFP coding sequence; CMV-inDTA (hGH), recombinant baculovirus harboring DT-A coding sequence comprising human growth hormone intron (hGH) under control of CMV promoter; CMV-GFP, recombinant baculovirus harboring GFP coding sequence under control of CMV promoter; CMV-Bar-GFP, recombinant baculovirus harboring barnase coding sequence fused in-frame with GFP; 35 CMV-inBar (SV40)-GFP, recombinant baculovirus harboring Barnase coding sequence comprising the SV40 large T-antigen intron and fused in-frame with the GFP coding sequence. Note production of recombinant baculoviruses in insect cells to titers of about 4.4×10⁶ pfu/ml following transfection with CMV-inBaR (SV40)-GFP, or about 9×10⁷ pfu/ ml following transfection with pCMV-inDTA (hGH), and production of recombinant baculoviruses in insect cells to titers of about 6.1×10⁸ pfu/ml following infection with CMBinBar (SV40)-GFP, or about 1.2×10° pfu/ml following infection with either CMV-inDTA (hGH) or CMV-GFP.

Example 9

This example, illustrated in FIG. 2, demonstrates the gen-50 eration of recombinant baculoviruses carrying DT-A coding sequence comprising an intron.

In these experiments, recombinant baculoviruses were generated according to manufacturer's protocols (Invitrogen). Briefly, the plasmids were respectively diluted into 1 ng/μl in TE buffer and 2 μl of each diluted plasmid was transformed into DH10Bac competent bacteria. After 48-hour incubation, white colonies were picked and miniprep Bacmid DNAs were prepared. The miniprep Bacmid DNAs were respectively transfected into Sf9 cells for 4 days. Cytopathic effect (CPE) was observed for Sf9 cells transfected with bacmids carrying the DT-A gene comprising of the intron, whereas no CPE was observed for Sf9 cells transfected with bacmids carrying the DT-A gene regardless of whether the Tet repressor expression cassette is present or not. These results indicate that any cells transfected with Bacmid carrying DT-A toxic gene was killed off and no recombinant baculovirus was generated and no CPE was observed. Super-

TABLE 1-continued

	The titers of recombinant baculoviruses determined by QPCR r.						
	Sample	Description	Titer (pfu/ml)				
•	7	Bac-CMVtetO-inDTA-p10-TetR, supernatant harvested after one round of amplification	9.7E+8				
	8	Bac-CMV-GFP (control), one round of amplification	1.2E+9				

Example 10

This example illustrates splicing of the introns from the 15 toxin ORFs carried by recombinant baculoviruses and expression of the toxin proteins in mammalian cells.

In order to determine if the introns inserted in the toxin ORFs could be spliced out in mammalian cells, recombinant baculoviruses harboring the intron-interrupted DT-A or barnase genes were used to transduce into HEK293 cells. The cell morphology was examined and photographed 2 days after the transduction.

In these experiments, human HEK 293 cells were cultured in DMEM media supplemented with 10% FBS and 100 units/ml of penicillin and 100 μ g/ml of streptomycin (Invitrogen, Carlsbad, Calif.) until confluent. The cells were then trypsinized and plated in 24-well plates at 1.5e+5 cell/well in the serum-containing media. After growing overnight, the media were removed and replaced with 250 μ l media plus 250 μ l recombinant baculovirus, or 400 μ l media plus 100 μ l recombinant baculovirus. A negative control was performed in the same way except that Sf9 cell culture media were used.

FIG. 13 presents genetic and transcriptional maps of representative recombinant baculoviruses carrying a DT-A gene comprising a human growth hormone intron, and a barnase gene comprising a SV40 large T-antigen intron and fused in-frame with GFP. Upon introduction into a mammalian cell, mature DT-A mRNA or Bar-GFP mRNA is formed through intron splicing and translated into fully functional DT-A or Barnase protein to kill the cell. The numbers above the genetic maps based on DT-A and Barnase coding sequences indicate the nucleotide positions where the introns were inserted.

In these experiments, following introduction of a barnase gene comprising an intron into mammalian cells and incubation for another 3 days, the cells were examined under microscope and CPE of the cells was recorded. Results are shown in Table 2 and FIG. 14. FIG. 14 illustrates the killing effects on mammalian (human embryonic kidney HEK293) cells by 50 transduction with recombinant baculoviruses harboring toxic genes for 48 hours. A, B, and C: representative fields photographed with a 20x objective lens under bright field illumination using a tungsten light source. D: Same field as in C, imaged by fluorescence illumination using a filter combination with excitation and transmission wavelengths suitable for GFP fluorescence. A, Bac-CMV-inDTA (hGH); B, Bac-CMV-inBar (SV40)-GFP; C, Bac-CMV-GFP; D, same image as C showing GFP expression. The results in FIG. 14 show that recombinant baculoviruses carrying either intron-interrupted DT-A or barnase genes caused fragmentation of HEK293 cells, a typical sign of cells undergoing apoptosis, whereas recombinant baculoviruses carrying GFP gene did not cause this fragmentation. In the 293 cells transduced with baculovirus carrying Bar-GFP, very faint GFP expression was observed (data not shown). Whether transduced by 100 µl or 250 µl of the recombinant baculoviruses carrying the DT-A gene comprising the hGH intron, or a barnase gene compris-

natants from all the transfected Sf9 cells were harvested as baculovirus stocks and baculovirus titers were determined with quantitative real-time PCR method using primers corresponding to the baculovirus gp64 gene. The recombinant baculoviruses from those showing apparent CPE were ampli- 5 fied and titers were determined. To determine the titer, recombinant baculoviruses were respectively diluted in 2×TE buffer, and heated at 95° C. for 30 min to break the viral particles and release viral DNA molecules. After cool down to room temperature, the baculoviral samples were diluted with QPCR dilution buffer and assayed with QPCR method with forward primer 5'-CCCTCTGTGTACTTGGCTCTAACG-3' (SEQ ID NO: 25) and reverse primer 5'-CGGTGAAACG-CAAAGTCGAGCACCG-3' (SEQ ID NO: 26). The QPCR titers (genome copies/ml) were converted to plaque forming units (pfu/ml) by dividing with a factor of 20 (empirically determined). The baculovirus titers are shown in the Table 1 below, and FIG. 12. The results demonstrate that recombinant baculoviruses carrying the DT-A gene comprising the human 20 grow hormone intron or the Barnase gene comprising SV40 large T-antigen intron can be generated to high titers, whereas no recombinant baculovirus was generated from bacmids carrying the DT-A gene or the Barnase gene without an intron insertion. The successful generation and amplification of 25 recombinant baculoviruses containing the intron-interrupted toxin ORFs indicate that the mammalian introns were not spliced in insect cells.

Although it is not an insect promoter, CMV promoter has some activity in insect cells and is able to drive low level of hemagglutinin expression (He, F, et al., BMC Microbiol 8: 238, 2008). This low level of promoter activity could drive some basal expression of DT-A, which killed any insect cells that express the toxin. No recombinant baculovirus could be produced from bacmid DNA containing the DT-A ORF flanked with loxP sites in an antisense direction to the CMV promoter, indicating that even cryptic promoter TATA-like sequence of the loxP site was able to drive trace amount of DT-A expression that can kill the insect cells. The same phenomenon was observed for the barnase gene, in which recombinant baculoviruses could be generated only when its ORF was interrupted by the SV40LT antigen intron (FIG. 12c), indicating that barnase is also toxic to insect cells. On the other hand, the successful generation of recombinant baculoviruses harboring the intron-interrupted DT-A or the barnase-GFP genes indicates that hGH and SV40LT antigen introns were not spliced in the insect cells and DT-A and barnase-GFP expression was totally abolished by this introninterruption.

TABLE 1

	Description	Titer (pfu/ml)
1	Negative control, supernatant harvested from Sf9 cell culture	1.3E+5
2	Bac-CMV-DTA, supernatant harvested 4 days post transfection	1.9E+5
3	Bac-CMVtetO-DTA-p10-TetR, supernatant harvested 4 days post transfection	8.3E+4
4	Bac-CMV-inDTA, supernatant harvested 4 days post transfection	9.5E+7
5	Bac-CMVtetO-inDTA-p10-TetR, supernatant harvested 4 days post transfection	1.1E+8
6	Bac-CMV-inDTA, supernatant harvested after one round of amplification	1.2E+9

25

ing a SV40 large T-antigen intron, most of the HEK 293 cells were rounded up and loosely detached, displaying heavy CPE, whereas all HEK 293 cells transduced with recombinant baculovirus carrying GFP did not show any sign of CPE and were growing as well as the negative control. These results demonstrate that in mammalian HEK293 cells, the introns (hGH intron or SV40 large T-antigen intron) were spliced out and DT-A mRNA or barnase-GFP mRNA were formed and translated, so that the host cells expressed functional DT-A or Barnase-GFP-fusion proteins, thereby killing the host HEK293 cells.

TABLE 2

Sample	Description	Volume added (µl)	CPE observed
1	ESF921 media	100	_
2	ESF921 media	250	_
3	Baculovirus Bac-CMV-GFP	100	-
4	Baculovirus Bac-CMV-GFP	250	_
5	Baculovirus Bac-CMV-inDTA	100	++++
6	Baculovirus Bac-CMV-inDTA	250	++++
7	Baculovirus Bac-CMVtetO- inDTA-p10-TetR	100	++++
8	Baculovirus Bac-CMVtetO- inDTA-p10-TetR	250	++++

Example 11

This example illustrates production of AAV vectors harboring the toxin ORFs in insect cells.

In these experiments, the production of AAV vectors car- 35 rying the DT-A gene comprising the human growth hormone intron or the Barnase gene comprising the SV40 large T-antigen intron and fused in-frame with GFP gene in insect cells (FIG. 15, FIG. 16). FIG. 15 illustrates a method of producing AAV vectors carrying a DT-A gene comprising the human 40 growth hormone intron or the barnase gene comprising the SV40 large T-antigen intron and fused in-frame with GFP gene in insect cells that carries a stably integrated AAVtransgene. FIG. 16 illustrates genetic and transcriptional maps of representative AAV vectors carrying a DT-A gene 45 comprising a human growth hormone intron, or a Barnase gene comprising a SV40 large T-antigen intron and fused in-frame with the GFP gene. The numbers above the genetic maps based on the DT-A coding sequence and the Barnase coding sequence indicate the nucleotide positions where the 50 introns were inserted.

AAV vector production was performed in Sf9 cells with the recombinant baculoviruses harboring intron-interrupted toxin ORFs. The recombinant baculoviruses were used to co-infect Sf9 cells with a second recombinant baculovirus 55 expressing AAV Rep and Cap genes for 3 days and AAV vectors were purified and titrated. The results in Tables 3 and 4 show that very similar yields of AAV vectors carrying the intron-interrupted toxin ORFs were produced as compared to AAV vectors carrying just the GFP gene.

In these experiments, Sf9 cells were grown to about 1E+9 cells/ml in ESF921 media (Expression Systems, CA) supplemented with 100 units/ml of penicillin and 100 µg/ml of streptomycin. The cells were then diluted 1:1 with fresh media and infected with 10 moi of Bac-RepCap9 and 5 moi of 65 Bac-CMV-inDTA or Bac-CMVtetO-inDTA-p10-TetR for 3 days. The cell pellets were harvested by centrifugation at

26

2000 rpm for 10 min. and lysed in SF9 lysis buffer (50 mM Tris-HCl, pH 7.4, 2 mM MgCl₂, 1% sarkosyl, 1% triton X-100, 125 units/ml of benzonase). Cellular DNA was digested by incubating at 37 C for 60 min. Cell lysates were cleared by centrifugation at 8000 rpm for 30 min. and loaded onto an SW28 centrifuge tubes containing 5 ml of 1.55 g/cc, and 10 ml of 1.32 g/cc of CsCl solutions. After centrifugation at 28,000 rpm for about 16 hours at 15° C., the rAAV-containing fraction was collected by puncturing the centrifuge tube using a syringe needle and subjected to a second round of CsCl ultracentrifugation. The rAAV-containing fraction was collected again by puncturing the centrifuge tube using a syringe needle and dialyzed in PBS buffer to remove the salts and detergents. Vector titers were determined by quantitative 15 real-time PCR assay according to manufacturer's protocol (Applied Biosystems, Foster City, Calif.). The results, presented in Table 3 and table 4, show that high titers of rAAV vectors carrying the toxic DT-A gene can be produced in Sf9 cells using the recombinant baculovirus that carries the DT-A gene comprising an intron with or without tet suppression, indicating that the insertion of an intron is required for AAV vector production.

TABLE 3

	Production of AAV vectors carryin	g DT-A gene	
Sample	Description	Total yield (vg/liter culture)	Relative yield (%)
1 2 3	AAV9-CMV-GFP (control vector) AAV9-CMV-inDTA (hGH) AAV9-CMVtetO-inDTA	6.63E+14 7.53E+14 5.32E+14	100 114 80

TABLE 4

Production of AAV9 and AAV2 vectors carrying the DT-A gene comprising the human growth hormone intron or the Barnase gene comprising the SV40 large T-antigen intron

Sample	Description	Total yield (vg/liter culture)
1	AAV9-CMV-GFP (control vector)	6.63E+14
2	AAV9-CMV-inDTA	7.53E+14
3	AAV2-CMV-GFP (hGH) (control vector)	1.15E+15
4	AAV2-CMV-inDTA (hGH)	1.15E+15
5	AAV2-CMV-inBar(SV40)-GFP	6.58E+14
6	AAV2-hTERT-inDTA(hGH)	9.30E+14

These results confirm that the mammalian introns were not functional in insect cells, which resulted in the successful production of AAV vectors that carry the intron-interrupted toxin ORFs. In addition, both AAV2 and AAV9 vectors were produced at similar yields, indicating that this AAV vector production was universal and not serotype specific.

Example 12

This example illustrates non-specific killing by AAV vectors containing DT-A under control of CMV promoter.

Since recombinant baculoviruses harboring the intron-interrupted toxin genes were able to kill the mammalian cells through transduction, we examined whether the AAV vectors harboring the toxin genes could also exert the killing effect on HEK293 cells. To test this possibility, HEK293 cells were plated on 24-well plates overnight and transduced with the AAV2 and AAV9 vectors. The results show that after transduction for 48 hours, the HEK293 cells transduced with either

AAV2 or AAV9 vectors carrying DTA or barnase gene displayed fragmented cellular morphology, a typical phenomenon of cells undergoing apoptosis. In contrast, there was no sign of apoptosis in the cells transduced with AAV2 or 9 vectors carrying the GFP gene (data not shown). These results 5 demonstrate that the introns were spliced out from the toxin coding sequences to form mature mRNAs and the mRNAs were translated into toxin proteins that killed the HEK293 cells. Since AAV2 exhibits much better in vitro transduction efficiency than AAV9, it was chosen for further in vitro 10 experiments. A cell proliferation assay was performed on HEK293 cells to further confirm the cell killing effect and the results are shown in FIG. 17a. The HEK293 cells transduced with AAV2-CMV-inDTA (hGH) were inhibited with no signs of growth, whereas the cells transduced with AAV2-CMV- 15 GFP grew as well as the untreated ones. Further, a cell viability assay was performed to verify the cytotoxicity of AAV2-CMV-inDTA (hGH) on Hep3B cells. The results are shown in FIG. 17b. A nice dose-response curve was observed. With the decrease of AAV2 vectors carrying DTA, the cell viability 20 increased, whereas there was essentially no change of cell viability for AAV2-CMV-GFP treated cells.

FIG. 17 illustrates the killing effect of AAV2-CMV-inDTA (hGH) on mammalian cells. (a) Proliferation of 293 cells transduced with AAV2 vectors. The cells (1.5E+5 cells/well) 25 were seeded in a 24-well plate overnight and transduced with AAV2-CMV-inDTA(hGH), or AAV2-CMV-GFP. The cell numbers were counted at different time points. When they reached confluency, the cells were split into a larger culture areas and let grow. (b) The viability of Hep3B cells trans- 30 duced with AAV2 vectors. Hep3B cells (3.2E+4 cells/well) were seeded in a 96-well plate overnight and transduced with a 4-fold serial dilution of AAV2-CMV-GFP, or AAV2-CMVinDTA(hGH). The cell viability was determined with CellTiter Glo Luminescent Cell Viability Assay Kit (Promega).

FIG. 18 illustrates the killing effects on human HEK293 cells by transduction with AAV vectors harboring toxic genes for 48 hours. The images were photographed with 20× lens under tungsten lighting (A, B, and C) or fluorescent lighting (D). A, AAV2-CMV-inDTA(hGH); B, AAV2-CMV-inBar 40 culture. (SV40)-GFP; C, AAV2-CMV-GFP; D, same image as C showing GFP expression.

In these experiments, HEK 293 cells harboring an AAV with CMV-inDTA(hGH) or CMV-inBar(SV40)-GFP were rounded up and loosely detached, displaying heavy CPE. 45 However, all HEK 293 cells transduced with recombinant baculovirus carrying GFP did not show any sign of CPE, and were growing as well as the negative control. These results demonstrate that in these mammalian cells, the introns (hGH intron or SV40 large T-antigen intron) were spliced out and 50 DT-A mRNA or barnase-GFP mRNA were formed and translated, and the host cells expressed functional DT-A or Barnase-GFP-fusion proteins, thereby killing the host HEK293 cells.

Example 13

This example illustrates production of an AAV vector comprising DT-A gene with the reading frame interrupted with an sequences.

In these experiments, the human AFP enhancer and promoter sequences were both PCR amplified from genomic DNA purified from human embryonic kidney HEK293 cells. The AFP enhancer was amplified with forward primer 65 5'-CCGCACGCGTCTTAGAAATATGGGGG-TAGGGGTGG-3' (SEQ ID NO: 27) (italic typeface indicates

28

restriction site for MluI) and reverse primer 5'-CT-CAAACTCTAGTGGCCTGGATAAAGCTGAGTG-3' (SEQ ID NO: 28). The AFP promoter was amplified with forward primer 5'-CTTTATCCAGGCCACTA-GAGTTTGAGGAGAATATTTG-3' (SEO ID NO: 29) and reverse primer 5'-ACTTACCTGACCGGTTGCTAGT-TATTTTGTTAT-3' (SEO ID NO: 30). The two PCR fragments were joined together by a second PCR amplification with the forward primer for the AFP enhancer and the reverse primer for the AFP promoter as described above. The final PCR fragment was digested with MluI and AgeI and ligated to the MluI and AgeI sites of pFB-CMV-inDTA (hGH) to replace the CMV promoter and create pFB-hAFP-inDTA

AAV2-hAFP-inDTA (hGH) was produced in insect cells by methods described herein to a titer of 1.69E+15.

Example 14

This example illustrates production of an AAV vector comprising DT-A gene with the reading frame interrupted with an intron, under the control the human survivin (SURV) promoter sequence.

In these experiments, the human survivin (SURV) promoter sequence was PCR amplified with genomic DNA purified from human embryonic kidney HEK293 cells with forprimer

5'-GGGGACTAGTCTGGCCATAGAACCA-

GAGAAGTGA-3' (SEQ ID NO: 31) (italic typeface indicates restriction site for SpeI) and reverse primer 5'-TTTTACCG-GTCCACCTCTGCCAACGGGTCCCGCG-3' (SEQ ID NO: 32) (italic typeface indicates restriction site for AgeI). The PCR fragment was digested with SpeI and AgeI and ligated to the SpeI and AgeI sites of pFB-CMV-inDTA (hGH) to replace the CMV promoter and create pFB-hSURV-inDTA (hGH).

AAV2-hSURV-inDTA (hGH) was produced in insect cells by methods described herein to a titer of 1.41E+15 vg/liter

Example 15

This example illustrates production of an AAV vector comprising DT-A gene with the reading frame interrupted with an intron, under the control the human cyclooxygenase-2 (COX2) promoter sequence.

In these experiments, the human cyclooxygenase-2 (COX2) promoter was PCR amplified with genomic DNA purified from human embryonic kidney HEK293 cells with forward primer 5'-GCCCACTAGTTGAGGTACCTGGTG-TAGTTT-3' (SEQ ID NO: 33) (italic typeface indicates restriction site for SpeI) and reverse primer 5'-ATATACCG-GTCAGCGGCGGGCAGGGCGCGG-3' (SEQ ID NO: 34) (italic typeface indicates restriction site for AgeI). The PCR fragment was digested with SpeI and AgeI and ligated to the SpeI and AgeI sites of pFB-CMV-inDTA (hGH) to replace the CMV promoter and create pFB-hCOX2-inDTA (hGH).

AAV2-hCOX2-inDTA (hGH) was produced in insect cells intron, under the control AFP enhancer and promoter 60 by methods described herein to a titer of 2.22E+13 vg/liter culture.

Example 16

This example illustrates production of an AAV vector comprising DT-A gene with the reading frame interrupted with an intron, under the control the human cholecystokinin type-A

receptor (CCKAR) promoter sequence (Takata, Y., et al., J. Gastroenterol. 37: 815-820, 2002).

In these experiments, the human cholecystokinin type-A receptor (CCKAR) promoter sequence was PCR amplified with genomic DNA purified from human embryonic kidney 5 HEK293 cells with forward primer 5'-GCCCACTAGTAC-CCAGGTACCTATGTTCAAAAG-3' (SEQ ID NO: 35) (italic typeface indicates restriction site for Spel) and reverse primer 5'-GCGCACCGGTTTGCCTGCTGCTTTCCAC-CAAG-3' (SEQ ID NO: 36) (italic typeface indicates restriction site for Agel). The PCR fragment was digested with Spel and Agel and ligated to the Spel and Agel sites of pFB-CMV-inDTA (hGH) to replace the CMV promoter and create pFB-hCCKAR-inDTA (hGH).

AAV2-hCCKAR-inDTA (hGH) was produced in insect 15 cells by methods described herein to a titer of 1.96E+14 vg/liter culture.

Example 17

This example illustrates production of an AAV vector comprising DT-A gene with the reading frame interrupted with an intron, under the control the human CXCR4 gene promoter sequence (Caruz, M., et al, FEBS Letters, 426: 271-278, 1998).

In these experiments, the human CXCR4 promoter sequence was PCR amplified with genomic DNA purified from human embryonic kidney HEK293 cells with forward primer 5'-GCCCACTAGTTACCGACCACCCGCAAA-CAG-3' (SEQ ID NO: 37) (italic typeface indicates restriction 30 site for Spel) and reverse primer 5'-GCGCACCGGTG-TAACCGCTGGTTCTCCAGA-3' (SEQ ID NO: 38) (italic typeface indicates restriction site for Agel). The PCR fragment was digested with Spel and Agel and ligated to the Spel and Agel sites of pFB-CMV-inDTA (hGH) to replace the 35 CMV promoter and create pFB-hCXCR4-inDTA (hGH).

AAV2-hCXCR4-inDTA (hGH) was produced in insect cells by methods described herein to a titer of 1.81E+15 vg/liter culture.

Example 18

This example illustrates tumor-specific killing by AAV vectors carrying DT-A under control of tumor-specific promoters.

In these experiments, cells were seeded on 24-well plates and transduced with AAV2 vectors carrying DT-A under control of various tumor-specific promoters as described above.

30

The results indicate that neuroblastoma BE(2)-M17 cells were killed by DT-A under control of hSURV or hCXCR4 but not hAFP promoter, whereas hepatocellular carcinoma Hep3B and HepG2 cells were killed by DT-A under control of either AFP, SURV, or CXCR4 promoters. The normal human lung cell line WI38 was not affected by DT-A under control of AFP, SURV, or hTERT promoter. FIG. 19 illustrates representative results of cell killing by AAV2-hSURV-inDTA (hGH). In these experiments, the cells were seeded in 24-well plate and transduced with AAV2-CMV-GFP (a), (c), (e), and (g) or AAV2-hSURV-inDTA(hGH) (b), (d), (f), and (h). Photographs were taken 3 days post transduction. (a) & (b), WI38; (c) and (d), HepG2; (e) and (f), Hep3B, and (g) and (h), BE(2)-M17 cells.

The three tumor cell lines were also tested with DTA under control of human COX2, CCKAR, and hTERT promoters but no significant cell killing effect was observed. In order to further characterize the cell killing effects, the cell viability assays were performed with DTA under control of AFP, SURV, and CXCR4 promoters. FIG. 20 illustrates cell viability assay of tumor cells by AAV2 vectors carrying DT-A under control of various tumor-specific promoters. In these experiments, the cells were seeded on 96-well plates and transduced with AAV2 vectors at 4-fold serial dilutions for 4 days and the cell viability was assayed with the CellTiter Glo Luminescent Cell Viability Assay kit. (a) HepG2 cells, (b) Hep3B cells, and (c) BE(2)-M17 cells. All three tumor-specific promoters show transcription activity in HepG2 cells. Among which the CXCR4 promoter exhibited the highest activity driving DTA to kill HepG2 cells when high titers of AAV2 vectors were used (FIG. 20a). For Hep3B cells, DTA under control of the SURV promoter exhibited the strongest killing effect, whereas AFP and CXCR4 showed partial killing activities (FIG. 20b). Interestingly, AFP promoter was not active in BE(2)-M17 cells, whereas DTA under control of both CXCR4 and SURV promoters exhibited strong killing effects (FIG. 20c).

All publications, including patent applications, patents, and other references mentioned herein are incorporated by reference, each in its entirety. Any discussion of references cited herein is intended merely to summarize the assertions made by their authors and no admission is made that any reference or portion thereof constitutes relevant prior art. Applicant reserves the right to challenge the accuracy and pertinency of the cited references.

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 41

<210> SEQ ID NO 1
<211> LENGTH: 144
<212> TYPE: DNA
<213> ORGANISM: Simian virus 40

<400> SEQUENCE: 1

catggcccaa cttgtttatt gcagcttata atggttacaa ataaagcaat agcatcacaa 60
atttcacaaa taaagcattt ttttcactgc attctagttg tggtttgtcc aaactcatca 120
atgtatctta tcatgtctgg atct 144
<210> SEQ ID NO 2
```

```
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Corynebacterium diphtheriae virus
<400> SEQUENCE: 2
gattatgatc actagtcgag
                                                                       2.0
<210> SEQ ID NO 3
<211> LENGTH: 30
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: DT-A with human growth hormone intron sequence
<400> SEQUENCE: 3
gggcgcttac ctttttgaat ggaatctaca
                                                                       30
<210> SEQ ID NO 4
<211> LENGTH: 30
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 4
                                                                       30
attcaaaaag gtaagcgccc ctaaaatccc
<210> SEQ ID NO 5
<211> LENGTH: 30
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 5
ttttgtatac ctggggagaa accagagggc
                                                                       30
<210> SEQ ID NO 6
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: overlapping DT-A and HGH intron PCR
      amplification
<400> SEQUENCE: 6
gattatgatc actagtcgag
                                                                       20
<210> SEQ ID NO 7
<211> LENGTH: 30
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: DT-A and HGH intron overlapping PCR
      amplification
<400> SEQUENCE: 7
ttttgtatac ctggggagaa accagagggc
                                                                       30
<210> SEQ ID NO 8
<211> LENGTH: 1683
<212> TYPE: DNA
<213 > ORGANISM: Corynebacterium diphtheriae virus
<400> SEQUENCE: 8
gtgagcagaa aactgtttgc gtcaatctta ataggggcgc tactggggat aggggcccca
                                                                       60
ccttcagccc atgcaggcgc tgatgatgtt gttgattctt ctaaatcttt tgtgatggaa
                                                                      120
aacttttctt cgtaccacgg gactaaacct ggttatgtag attccattca aaaaggtata
                                                                      180
```

-continued

```
caaaagccaa aatctggtac acaaggaaat tatgacgatg attggaaagg gttttatagt
                                                                     240
accgacaata aatacgacgc tgcgggatac tctgtagata atgaaaaccc gctctctgga
                                                                     300
aaagctggag gcgtggtcaa agtgacgtat ccaggactga cgaaggttct cgcactaaaa
                                                                     360
gtggataatg ccgaaactat taagaaagag ttaggtttaa gtctcactga accgttgatg
                                                                     420
gagcaagtcg gaacggaaga gtttatcaaa aggttcggtg atggtgcttc gcgtgtagtg
                                                                     480
ctcagccttc ccttcgctga ggggagttct agcgttgaat atattaataa ctgggaacag
                                                                     540
gcgaaagcgt taagcgtaga acttgagatt aattttgaaa cccgtggaaa acgtggccaa
                                                                      600
gatgcgatgt atgagtatat ggctcaagcc tgtgcaggaa atcgtgtcag gcgatcagta
ggtagctcat tgtcatgcat aaatcttgat tgggatgtca taagggataa aactaagaca
                                                                     720
aagatagagt ctttgaaaga gcatggccct atcaaaaata aaatgagcga aagtcccaat
                                                                     780
aaaacagtat ctgaggaaaa agctaaacaa tacctagaag aatttcatca aacggcatta
                                                                     840
gagcatcctg aattgtcaga acttaaaacc gttactggga ccaatcctgt attcgctggg
                                                                     900
gctaactatg cggcgtgggc agtaaacgtt gcgcaagtta tcgatagcga aacagctgat
                                                                     960
aatttggaaa agacaactgc tgctctttcg atacttcctg gtatcggtag cgtaatgggc
                                                                    1020
attqcaqacq qtqccqttca ccacaataca qaaqaqataq tqqcacaatc aataqcttta
                                                                    1080
tegtetttaa tggttgetea agetatteea ttggtaggag agetagttga tattggttte
                                                                    1140
gctgcatata attttgtaga gagtattatc aatttatttc aagtagttca taattcgtat
                                                                    1200
aatcgtcccg cgtattctcc ggggcataaa acgcaaccat ttcttcatga cgggtatgct
                                                                    1260
                                                                    1320
gtcagttgga acactgttga agattcgata atccgaactg gttttcaagg ggagagtggg
cacgacataa aaattactgc tgaaaatacc ccgcttccaa tcgcgggtgt cctactaccg
                                                                    1380
actattcctg gaaagctgga cgttaataag tccaagactc atatttccgt aaatggtcgg
                                                                    1440
aaaataagga tgcgttgcag agctatagac ggtgatgtaa ctttttgtcg ccctaaatct
                                                                    1500
cctgtttatg ttggtaatgg tgtgcatgcg aatcttcacg tggcatttca cagaagcagc
                                                                    1560
toggagaaaa ttoattotaa tgaaatttog toggattoca taggogttot tgggtaccag
                                                                    1620
aaaacagtag atcacaccaa ggttaattct aagctatcgc tattttttga aatcaaaagc
                                                                    1680
                                                                    1683
tqa
<210> SEQ ID NO 9
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: barnase coding sequence amplified from plasmid
     pF1A-T7
<400> SEQUENCE: 9
cccgaattcg ccaccatggc acaggttatc aac
                                                                       33
<210> SEQ ID NO 10
<211> LENGTH: 30
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: barnase coding sequence amplified from plasmid
     pF1A-T7
```

tgctcaccat tctgattttt gtaaaggtct

<400> SEQUENCE: 10

```
<210> SEQ ID NO 11
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: GFP coding sequence amplified from pFB-GFP
     plasmid
<400> SEQUENCE: 11
caaaaatcag aatggtgagc aagggcgagg
                                                                    30
<210> SEQ ID NO 12
<211> LENGTH: 32
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: GFP coding sequence amplified from pFB-GFP
     plasmid
<400> SEQUENCE: 12
ggggggtacc tcattacttg tacagctcgt cc
                                                                    32
<210> SEQ ID NO 13
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR to fuse Barnase coding sequence with GFP
     coding sequence
<400> SEQUENCE: 13
cccgaattcg ccaccatggc acaggttatc aac
                                                                    33
<210> SEQ ID NO 14
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR to fuse barnase coding sequence with GFP
<400> SEQUENCE: 14
ggggggtacc tcattacttg tacagctcgt cc
                                                                    32
<210> SEQ ID NO 15
<211> LENGTH: 832
<212> TYPE: DNA
<213 > ORGANISM: Bacillus amyloliquefaciens
<400> SEQUENCE: 15
ctggaaaacg tcacattgct tccgcatatc gggtcagcaa cggctaaaat ccgcttgaat
atgttcacac aagccgctca aaacatgatt gacgccgtat acggaagaac gccgaaaaac
                                                                   120
cttactaagg aatttcaata agaagaaaaa tcccggttgg ttcagccggg gtttatttt
                                                                   180
cgctagataa aaagtactat ttttaaattc tttctattcc tttctttcgt tgctgataca
                                                                   240
atgaaaagga atcagcttca catgatgaaa atgggaggta ttgctttgaa aaaacgatta
                                                                   300
tcgtggattt ccgtttgttt actggtgctt gtctccgcgg cggggatgct gttttcaaca
                                                                   360
gctgccaaaa cggaaacatc ttctcacaag gcacacacag aagcacaggt tatcaacacg
                                                                   420
480
aaatcagaag cacaagccct cggctgggtg gcatcaaaag ggaaccttgc agacgtcgct
                                                                   540
ccggggaaaa gcatcggcgg agacatcttc tcaaacaggg aaggcaaact cccgggcaaa
```

				-contir	nued 	
agcggacgaa	catggcgtga	agcggatatt	aactatacat	caggetteag	aaattcagac	660
cggattcttt	actcaagcga	ctggctgatt	tacaaaacaa	cggaccatta	tcagaccttt	720
acaaaaatca	gataacgaaa	aaaacggctt	ccctgcggag	gccgtttttt	tcagctttac	780
ataaagtgtg	taataaattt	ttcttcaaac	tctgatcggt	caatttcact	tt	832
<220> FEATU	TH: 4733 : DNA NISM: Artifi URE:	icial Sequer DN: GFP gene		ing vector		
<400> SEQUE	ENCE: 16					
tagttattaa	tagtaatcaa	ttacggggtc	attagttcat	agcccatata	tggagttccg	60
cgttacataa	cttacggtaa	atggcccgcc	tggctgaccg	cccaacgacc	cccgcccatt	120
gacgtcaata	atgacgtatg	ttcccatagt	aacgccaata	gggactttcc	attgacgtca	180
atgggtggag	tatttacggt	aaactgccca	cttggcagta	catcaagtgt	atcatatgcc	240
aagtacgccc	cctattgacg	tcaatgacgg	taaatggccc	gcctggcatt	atgcccagta	300
catgacctta	tgggactttc	ctacttggca	gtacatctac	gtattagtca	tcgctattac	360
catggtgatg	cggttttggc	agtacatcaa	tgggcgtgga	tagcggtttg	actcacgggg	420
atttccaagt	ctccacccca	ttgacgtcaa	tgggagtttg	ttttggcacc	aaaatcaacg	480
ggactttcca	aaatgtcgta	acaactccgc	cccattgacg	caaatgggcg	gtaggcgtgt	540
acggtgggag	gtctatataa	gcagagctgg	tttagtgaac	cgtcagatcc	gctagcgcta	600
ccggactcag	atctcgagct	caagcttcga	attctgcagt	cgacggtacc	gcgggcccgg	660
gatccaccgg	tcgccaccat	ggtgagcaag	ggcgaggagc	tgttcaccgg	ggtggtgccc	720
atcctggtcg	agctggacgg	cgacgtaaac	ggccacaagt	tcagcgtgtc	cggcgagggc	780
gagggcgatg	ccacctacgg	caagctgacc	ctgaagttca	tctgcaccac	cggcaagctg	840
cccgtgccct	ggcccaccct	cgtgaccacc	ctgacctacg	gcgtgcagtg	cttcagccgc	900
taccccgacc	acatgaagca	gcacgacttc	ttcaagtccg	ccatgcccga	aggctacgtc	960
caggagcgca	ccatcttctt	caaggacgac	ggcaactaca	agacccgcgc	cgaggtgaag	1020
ttcgagggcg	acaccctggt	gaaccgcatc	gagctgaagg	gcatcgactt	caaggaggac	1080
ggcaacatcc	tggggcacaa	gctggagtac	aactacaaca	gccacaacgt	ctatatcatg	1140
gccgacaagc	agaagaacgg	catcaaggtg	aacttcaaga	tccgccacaa	catcgaggac	1200
ggcagcgtgc	agctcgccga	ccactaccag	cagaacaccc	ccatcggcga	cggccccgtg	1260
ctgctgcccg	acaaccacta	cctgagcacc	cagtccgccc	tgagcaaaga	ccccaacgag	1320
aagcgcgatc	acatggtcct	gctggagttc	gtgaccgccg	ccgggatcac	tctcggcatg	1380
gacgagctgt	acaagtaaag	cggccgcgac	tctagatcat	aatcagccat	accacatttg	1440
tagaggtttt	acttgcttta	aaaaacctcc	cacacctccc	cctgaacctg	aaacataaaa	1500
		aacttgttta				1560
		aataaagcat				1620
		taaggcgtaa				1680
		cagctcattt				1740
		gaccgagata				1800
agtccactat	taaagaacgt	ggactccaac	gtcaaagggc	gaaaaaccgt	ctatcagggc	1860

gatggcccac	tacgtgaacc	atcaccctaa	tcaagttttt	tggggtcgag	gtgccgtaaa	1920
gcactaaatc	ggaaccctaa	agggagcccc	cgatttagag	cttgacgggg	aaagccggcg	1980
aacgtggcga	gaaaggaagg	gaagaaagcg	aaaggagcgg	gegetaggge	gctggcaagt	2040
gtagcggtca	cgctgcgcgt	aaccaccaca	cccgccgcgc	ttaatgcgcc	gctacagggc	2100
gcgtcaggtg	gcacttttcg	gggaaatgtg	cgcggaaccc	ctatttgttt	atttttctaa	2160
atacattcaa	atatgtatcc	gctcatgaga	caataaccct	gataaatgct	tcaataatat	2220
tgaaaaagga	agagtcctga	ggcggaaaga	accagctgtg	gaatgtgtgt	cagttagggt	2280
gtggaaagtc	cccaggctcc	ccagcaggca	gaagtatgca	aagcatgcat	ctcaattagt	2340
cagcaaccag	gtgtggaaag	tccccaggct	ccccagcagg	cagaagtatg	caaagcatgc	2400
atctcaatta	gtcagcaacc	atagtcccgc	ccctaactcc	gcccatcccg	cccctaactc	2460
cgcccagttc	cgcccattct	ccgccccatg	gctgactaat	tttttttatt	tatgcagagg	2520
ccgaggccgc	ctcggcctct	gagctattcc	agaagtagtg	aggaggcttt	tttggaggcc	2580
taggcttttg	caaagatcga	tcaagagaca	ggatgaggat	cgtttcgcat	gattgaacaa	2640
gatggattgc	acgcaggttc	teeggeeget	tgggtggaga	ggctattcgg	ctatgactgg	2700
gcacaacaga	caatcggctg	ctctgatgcc	gccgtgttcc	ggctgtcagc	gcaggggcgc	2760
ccggttcttt	ttgtcaagac	cgacctgtcc	ggtgccctga	atgaactgca	agacgaggca	2820
gegeggetat	cgtggctggc	cacgacgggc	gttccttgcg	cagctgtgct	cgacgttgtc	2880
actgaagcgg	gaagggactg	gctgctattg	ggcgaagtgc	cggggcagga	tctcctgtca	2940
tctcaccttg	ctcctgccga	gaaagtatcc	atcatggctg	atgcaatgcg	gcggctgcat	3000
acgcttgatc	cggctacctg	cccattcgac	caccaagcga	aacatcgcat	cgagcgagca	3060
cgtactcgga	tggaagccgg	tcttgtcgat	caggatgatc	tggacgaaga	gcatcagggg	3120
ctcgcgccag	ccgaactgtt	cgccaggctc	aaggcgagca	tgcccgacgg	cgaggatctc	3180
gtcgtgaccc	atggcgatgc	ctgcttgccg	aatatcatgg	tggaaaatgg	ccgcttttct	3240
ggattcatcg	actgtggccg	gctgggtgtg	gcggaccgct	atcaggacat	agcgttggct	3300
acccgtgata	ttgctgaaga	gcttggcggc	gaatgggctg	accgcttcct	cgtgctttac	3360
ggtatcgccg	ctcccgattc	gcagcgcatc	gccttctatc	gccttcttga	cgagttcttc	3420
tgagcgggac	tctggggttc	gaaatgaccg	accaagcgac	gcccaacctg	ccatcacgag	3480
atttcgattc	caccgccgcc	ttctatgaaa	ggttgggctt	cggaatcgtt	ttccgggacg	3540
ccggctggat	gatectecag	cgcggggatc	tcatgctgga	gttcttcgcc	caccctaggg	3600
ggaggctaac	tgaaacacgg	aaggagacaa	taccggaagg	aacccgcgct	atgacggcaa	3660
taaaaagaca	gaataaaacg	cacggtgttg	ggtcgtttgt	tcataaacgc	ggggttcggt	3720
cccagggctg	gcactctgtc	gataccccac	cgagacccca	ttggggccaa	tacgcccgcg	3780
tttcttcctt	ttccccaccc	caccccccaa	gttcgggtga	aggcccaggg	ctcgcagcca	3840
acgtcggggc	ggcaggccct	gccatagcct	caggttactc	atatatactt	tagattgatt	3900
taaaacttca	tttttaattt	aaaaggatct	aggtgaagat	cctttttgat	aatctcatga	3960
ccaaaatccc	ttaacgtgag	ttttcgttcc	actgagcgtc	agaccccgta	gaaaagatca	4020
aaggatcttc	ttgagatcct	ttttttctgc	gcgtaatctg	ctgcttgcaa	acaaaaaac	4080
	agcggtggtt					4140
	cagcagagcg					4200
	9					

-continued

```
gccaccactt caagaactet gtagcaccge ctacatacet egetetgeta atcetgttac
                                                                     4260
cagtggctgc tgccagtggc gataagtcgt gtcttaccgg gttggactca agacgatagt
                                                                     4320
taccggataa ggcgcagcgg tcgggctgaa cggggggttc gtgcacacag cccagcttgg
                                                                     4380
agcgaacgac ctacaccgaa ctgagatacc tacagcgtga gctatgagaa agcgccacgc
                                                                     4440
ttcccgaagg gagaaaggcg gacaggtatc cggtaagcgg cagggtcgga acaggagagc
                                                                     4500
gcacgaggga gcttccaggg ggaaacgcct ggtatcttta tagtcctgtc gggtttcgcc
                                                                     4560
acctctgact tgagcgtcga tttttgtgat gctcgtcagg ggggcggagc ctatggaaaa
acgccagcaa cgcggccttt ttacggttcc tggccttttg ctggcctttt gctcacatgt
tettteetge gttateeeet gattetgtgg ataacegtat tacegecatg cat
                                                                     4733
<210> SEQ ID NO 17
<211> LENGTH: 45
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: barnase coding sequence with SV40LT intron
<400> SEQUENCE: 17
ccccgaattc gccaccatgg cacaggtatt tgcttcttcc ttaaa
                                                                       45
<210> SEO ID NO 18
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: barnase coding sequence with SV40LT
<400> SEQUENCE: 18
tgttgataac ctaaaataca caaacaatta
                                                                       30
<210> SEQ ID NO 19
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: the barnase coding sequence together with GFP
      coding sequence
<400> SEQUENCE: 19
tgtattttag gttatcaaca cgtttgacgg
                                                                       30
<210> SEQ ID NO 20
<211> LENGTH: 32
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: barnase coding sequence together with GFP
      coding sequence
<400> SEQUENCE: 20
ggggggtacc tcattacttg tacagctcgt cc
                                                                       32
<210> SEQ ID NO 21
<211 > LENGTH: 45
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: barnase coding sequence with GFP and CMV
<400> SEQUENCE: 21
```

45

ccccgaattc gccaccatgg cacaggtatt tgcttcttcc ttaaa

-continued

```
<210> SEQ ID NO 22
<211> LENGTH: 32
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: barnase coding sequence with GFP and CMV
<400> SEQUENCE: 22
ggggggtacc tcattacttg tacagctcgt cc
                                                                        32
<210> SEQ ID NO 23
<211> LENGTH: 30
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 23
gcgcacgcgt atcatcagct tttcaaagac
                                                                        30
<210> SEQ ID NO 24
<211> LENGTH: 30
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 24
                                                                        30
cgcgaccggt cgctgcctga aactcgcgcc
<210> SEQ ID NO 25
<211> LENGTH: 24
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: baculovirus gp64 gene
<400> SEQUENCE: 25
ccctctgtgt acttggctct aacg
                                                                        24
<210> SEQ ID NO 26
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: baculovirus gp64 gene
<400> SEQUENCE: 26
cggtgaaacg caaagtcgag caccg
                                                                        25
<210> SEQ ID NO 27
<211> LENGTH: 35
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 27
                                                                        35
ccgcacgcgt cttagaaata tgggggtagg ggtgg
<210> SEQ ID NO 28
<211> LENGTH: 33
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 28
ctcaaactct agtggcctgg ataaagctga gtg
                                                                        33
```

<210> SEQ ID NO 29

<212>	LENGTH: 37 TYPE: DNA ORGANISM: Homo sapiens		
	SEQUENCE: 29		
ctttat	ccag gccactagag tttgaggaga	atatttg	37
<211><212>	SEQ ID NO 30 LENGTH: 33 TYPE: DNA ORGANISM: Homo sapiens		
<400>	SEQUENCE: 30		
acttad	ectga ceggttgeta gttattttgt	tat	33
<211><212><213>	SEQ ID NO 31 LENGTH: 34 TYPE: DNA ORGANISM: Homo sapiens		
<400>	SEQUENCE: 31		
ggggad	stagt ctggccatag aaccagagaa	gtga	34
<211> <212>	SEQ ID NO 32 LENGTH: 34 TYPE: DNA ORGANISM: Homo sapiens		
<400>	SEQUENCE: 32		
ttttad	ceggt ceacetetge caacgggtee	cgcg	34
<211> <212>	SEQ ID NO 33 LENGTH: 30 TYPE: DNA ORGANISM: Homo sapiens		
<400>	SEQUENCE: 33		
gcccad	etagt tgaggtacct ggtgtagttt		30
<211><212>	SEQ ID NO 34 LENGTH: 30 TYPE: DNA ORGANISM: Homo sapiens		
<400>	SEQUENCE: 34		
atatad	ceggt cageggeggg cagggegegg		30
<211><212>	SEQ ID NO 35 LENGTH: 33 TYPE: DNA ORGANISM: Homo sapiens		
<400>	SEQUENCE: 35		
gccca	ctagt acccaggtac ctatgttcaa	aag	33
<211><212>	SEQ ID NO 36 LENGTH: 32 TYPE: DNA ORGANISM: Homo sapiens		
<400>	SEQUENCE: 36		
gcgcad	ceggt ttgeetgetg etttecacea	ag	32

-continued

<210> SEQ ID NO 37 <211> LENGTH: 30 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 37 gcccactagt taccgaccac ccgcaaacag 30 <210> SEQ ID NO 38 <211> LENGTH: 30 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 38 gcgcaccggt gtaaccgctg gttctccaga 30 <210> SEQ ID NO 39 <211> LENGTH: 844 <212> TYPE: DNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: DT-A coding sequence comprising the hGH intron <400> SEQUENCE: 39 atgggggctg atgatgttgt tgattcttct aaatcttttg tgatggaaaa cttttcttcg 60 taccacggga ctaaacctgg ttatgtagat tccattcaaa aaggtaagcg cccctaaaat 120 ccctttggca caatgtgtcc tgaggggaga ggcagcgacc tgtagatggg acgggggcac 180 taaccctcag ggtttggggt tctgaatgtg agtatcgcca tgtaagccca gtatttggcc 240 aatctcagaa agctcctggc tccctggagg atggagagag aaaaacaaac agctcctgga 300 gcagggagag tgctggcctc ttgctctccg gctccctctg ttgccctctg gtttctcccc 360 aggtatacaa aagccaaaat ctggtacaca aggaaattat gacgatgatt ggaaagggtt 420 ttatagtacc gacaataaat acgacgctgc gggatactct gtagataatg aaaacccgct 480 ctctggaaaa gctggaggcg tggtcaaagt gacgtatcca ggactgacga aggttctcgc 540 actaaaagtg gataatgccg aaactattaa gaaagagtta ggtttaagtc tcactgaacc 600 gttgatggag caagtcggaa cggaagagtt tatcaaaagg ttcggtgatg gtgcttcgcg 660 tgtagtgctc agccttccct tcgctgaggg gagttctagc gttgaatata ttaataactg 720 ggaacaggcg aaagcgttaa gcgtagaact tgagattaat tttgaaaccc gtggaaaacg 780 tggccaagat gcgatgtatg agtatatggc tcaagcctgt gcaggaaatc gtgtcaggcg 840 atga 844 <210> SEQ ID NO 40 <211> LENGTH: 694 <212> TYPE: DNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: DT-A coding sequence comprising the SV40LT antigen intron <400> SEQUENCE: 40 atggcacagg tatttgcttc ttccttaaat cctggtgttg atgcaatgta ctgcaaacaa 60 tggcctgagt gtgcaaagaa aatgtctgct aactgcatat gcttgctgtg cttactgagg 120 atgaagcatg aaaatagaaa attatacagg aaagatccac ttgtgtgggt tgattgctac 180 tgcttcgatt gctttagaat gtggtttgga cttgatcttt gtgaaggaac cttacttctg 240 tggtgtgaca taattggaca aactacctac agagatttaa agctctaagg taaatataaa 300

-continued

atttttaagt gtataatgt	g ttaaactact	gattctaatt	gtttgtgtat	tttaggttat	360		
caacacgttt gacggggtt	g cggattatct	tcagacatat	cataagctac	ctgataatta	420		
cattacaaaa tcagaagca	c aagccctcgg	ctgggtggca	tcaaaaggga	accttgcaga	480		
cgtcgctccg gggaaaagc	a teggeggaga	catcttctca	aacagggaag	gcaaactcca	540		
gggcaaaagc ggacgaaca	t ggcgtgaagc	ggatattaac	tatacatcag	gcttcagaaa	600		
ttcagaccgg attctttac	t caagegaetg	gctgatttac	aaaacaacgg	accattatca	660		
gacctttaca aaaatcaga	a tggtgagcaa	gggc			694		
<210> SEQ ID NO 41 <211> LENGTH: 15 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: GFP sequence with DT-A coding sequence comprising the SV40LT antigen intron							
<400> SEQUENCE: 41							
gagctgtaca agtaa					15		

What is claimed is:

- 1. A nucleic acid comprising:
- a sequence encoding a toxic polypeptide; and
- an intron that interrupts the sequence, whereby the intron is spliced in mammalian cells but not in insect cells to form an mRNA that is translated to form cell-toxic levels of the toxic polypeptide in mammalian cells but not in insect cells.
- 2. A nucleic acid in accordance with claim 1, wherein the 35 toxic polypeptide is selected from the group consisting of diphtheria toxin (DT-A), barnase, ricin, abrin, and Pseudomonas exotoxin.
- 3. A nucleic acid in accordance with claim 1, wherein the toxic polypeptide is diphtheria toxin (DT-A).
- **4.** A nucleic acid accordance with claim **1**, wherein the toxic polypeptide is a barnase polypeptide.
- 5. A nucleic acid in accordance with claim 1, further comprising at least one expression element operably linked to the sequence.
- **6**. A nucleic acid in accordance with claim **5**, wherein the expression element is selected from the group consisting of a promoter, an IRES, an enhancer and a combination thereof.
- 7. A nucleic acid in accordance with claim 5, wherein the expression element is selected from the group consisting of a 50 CMV promoter, an AFP promoter, an AFT enhancer, an hSURV promoter, a CXCR4 promoter, an hTERT promoter, a COX2 promoter, and a CCKAR promoter.
- **8**. A nucleic acid in accordance with claim **5**, wherein the expression element is selected from the group consisting of an 55 hSURV promoter and a CXCR4 promoter.
- 9. A nucleic acid in accordance with claim 1, wherein the intron is an artificial intron.
- **10**. A nucleic acid in accordance with claim **1**, wherein the intron is selected from the group consisting of a human 60 growth hormone intron and a SV40 large T-antigen intron.
- 11. A nucleic acid in accordance with claim 1, comprising, in 5' to 3' order, a first ITR, a promoter, a first portion of a toxic gene, an intron, a second portion of the toxic gene, a polyadenylation signal, and a second ITR.
- 12. A nucleic acid in accordance with claim 11, wherein the first ITR is an AAV ITR.

- 13. A nucleic acid in accordance with claim 11, wherein the second ITR is an AAV ITR.
- **14**. A nucleic acid in accordance with claim **11**, wherein the promoter is selected from the group consisting of a CMV promoter, a hSURV promoter, a hCXCR4 promoter, and a hAFP promoter.
- 15. A nucleic acid in accordance with claim 11, wherein toxic gene encodes DT-A.
- 16. A nucleic acid in accordance with claim 11, wherein the toxic gene encodes Barnase.
- 17. A viral vector comprising the nucleic acid of claim 1, wherein the vector is selected from the group consisting of a baculovirus, a retrovirus, an adenovirus, an adeno-associated virus (AAV) and a combination thereof.
- 18. A viral vector in accordance with claim 17, wherein the vector is a baculovirus, an adeno-associated virus (AAV), or a combination thereof.
- 19. A viral vector in accordance with claim 17, wherein the vector is an adeno-associated virus (AAV).
- 20. A viral vector in accordance with claim 17, wherein the vector is selected from the group consisting of an AAV2 and an AAV9.
- 21. An insect cell in vitro comprising the nucleic acid of claim 1.
- 22. An insect cell in accordance with claim 21, wherein the nucleic acid is comprised by a viral genome.
- 23. An insect cell in accordance with claim 21, wherein the cell is stably transformed with the nucleic acid of claim 1.
 - 24. A cell culture comprising:
 - a plurality of cells of claim 21; and
 - a culture medium.
- **25**. A cell culture in accordance with claim **24**, wherein unconcentrated culture medium comprises a baculovirus greater than 10^6 PFU/ml.
- **26**. A method of growing a vector comprising a toxic gene in vitro, comprising:
 - providing a cell culture comprising insect cells;
 - infecting or transfecting the cells with a nucleic acid of claim 1; and
 - incubating the cells under conditions suitable for virus production.

* * * * *